微信扫码
添加专属顾问
我要投稿
今天最大的瓜莫过于:斯坦福 Llama3-V PK 清华 MiniCPM-Llama3-V-2.5,详细证据:
https://github.com/OpenBMB/MiniCPM-V/issues/196
吃瓜之余,来看一下多模态大模型架构演变!
一篇优秀的论文综述了多模态AI架构——包含了一个全面的分类法和对任意到任意模态模型发展的分析。
多模态模型架构的分类。四种不同类型的多模态架构及其子类型被概述。各种模型被系统地分类到类型和子类型中。深度融合:类型A和类型B在模型的内部层融合多模态输入。早期融合:类型C和类型D在输入阶段促进融合。类型A使用标准的交叉注意力机制,而类型B则利用定制设计的交叉注意力或专门的层。类型C是一种非标记化的多模态模型架构,而类型D则采用输入标记化(离散标记)。SCDF:基于标准交叉注意力的深度融合。CLDF:基于定制层的深度融合。NTEF:非标记化的早期融合。TEF:标记化的早期融合。
Type-B (CLDF:Custom Layer based Deep Fusion) - 自定义层深度融合:使用定制设计的层(例如自定义交叉注意力层或其他特定层)在模型的内部层进行多模态输入的深度融合。
Type-C (NTEF:Non-Tokenized Early Fusion) - 非标记化早期融合:在模型的输入阶段进行多模态输入的早期融合,使用模态特定的编码器,但不涉及模型内部层的深度融合。这种类型可能使用线性层/MLP、Q-former、Perceiver resampler或自定义可学习层来连接编码器输出和LLM。
Type-D (TEF:Tokenized Early Fusion ) - 标记化早期融合:与Type-C类似,在输入阶段进行早期融合,但使用标记化技术(如tokenizers)来处理模态。
https://arxiv.org/pdf/2405.17927The Evolution of Multimodal Model Architectures
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-24
大模型技术创新驱动的AI生态和应用演进
2025-04-24
除了MCP我们还有什么?
2025-04-24
LLM 推理引擎之争:Ollama or vLLM ?
2025-04-24
刚刚,OpenAI发布GPT-image-1模型,更强吉卜力版本来啦
2025-04-24
捕获AI的注意力:重复、幻觉、偏见背后的物理学
2025-04-24
Trae这次更新太炸了:上下文、MCP、智能体全上线,AI IDE全面觉醒!
2025-04-23
专题策划(下)| 如何实现大模型与行业的深度耦合?
2025-04-23
2025:LLM 超越 “Token 生成器” 的一年
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17