微信扫码
与创始人交个朋友
我要投稿
各位看官,小生三体智人,这厢有礼了,是一名新生代IT民工。
然而,海量算力背后有一个很现实的问题:贵!
目前支持大模型训练有三类系统,分别为基于英伟达GPU的系统、基于国产AI芯片的系统和基于超级计算机的系统。其中,基于英伟达公司GPU的系统硬件性能和编程生态好,但受到禁售影响,加之价格暴涨,一卡难求。而基于国产AI芯片的系统,尽管近年来国内二十余家芯片公司取得了很大的进步,但仍面临国产卡应用不足、生态系统有待改善的问题。
要改善基于国产AI芯片的系统生态,可以从十大方向努力:
第一是编程框架。应进一步降低编写人工智能模型的复杂度;利用基本算子快速构建人工智能模型,如PyTorch、TensorFlow。
第二是并行加速,为多机多卡环境提供人工智能模型并行训练的能力;支持数据并行、模型并行、流水线并行、张量并行等,如微软的DeepSpeed、英伟达Megatron-LM。
第三是通信库,要提供跨机跨卡的通信能力;可支持人工智能模型训练所需各种通信模式;可根据底层网络特点充分利用网络通信带宽,如英伟达的NCCL库、超算普遍支持的MPI通信库。
第四是算子库,需提供人工智能模型所需基本操作的高性能实现;能够尽可能覆盖典型人工智能模型所需的操作;算子库能充分发挥底层硬件的性能,如英伟达cuDNN,cnBLAS。
第五是AI编译器,要可在异构处理器上对人工智能程序生成高效的目标代码;对算子库不能提供的操作通过AI编译器自动生成高效目标代码,如XLA、TVM。不过,郑纬民也谈到,目前国内掌握AI编译器的人才较少,实现难度较大。
第六是编程语言,要提供异构处理器上编写并行程序的支持;覆盖底层硬件功能,发挥硬件性能;能够编写人工智能模型的基本算子(Operator),如英伟达的CUDA,Intel的oneAPI。
第七是调度器,需具备在大规模系统上高效调度人工智能任务的能力;同时设计高效调度算法,提高集群资源利用率,如Kubernetes(K8S)、华为ModelArts。
第八是内存分配系统,可针对人工智能应用特点提供高效的内存分配策略。
第九是容错系统,用来提供在硬件发生故障后快速恢复模型训练的能力。
第十是存储系统,需支持训练过程中高效的数据读写(检查点训练数据等)。
当前国内已经有了上述软件,但做得不够全,不够好。当务之急是先将上述软件做好,打造好生态,从而提高用户的使用意愿。
在某国产超算上进行大模型训练与推理时,使用超算调度系统申请512个节点来进行7B模型预训练,半精度和全精度训练效果可与英伟达平台完全对齐;与租用英伟达GPU相比,使用国产超算可节省6倍左右的成本。
构建国产万卡系统很难,但很有必要,未来还是要繁荣国产卡的生态系统,做好软硬件的协同设计,同时解决大模型基础设施的几大问题。
路虽远,行则将至!事虽难,做则必成!
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-08-13
2024-05-28
2024-04-26
2024-08-21
2024-06-13
2024-08-04
2024-07-09
2024-09-23
2024-07-18
2024-04-11