微信扫码
与创始人交个朋友
我要投稿
加州伯克利大学的 AI 大佬们又搞事情了!这次他们祭出了一个名为 KVQuant 的大杀器,专治LLM内存焦虑症!?
分析表明,对于较小的批处理规模,LLM推理过程的主要瓶颈在于内存带宽。随着计算速度和内存速度之间的差距不断扩大,这个问题只会越来越严重。而对于长序列长度,内存瓶颈主要来自于缓存键(Key)和值(Value)激活的内存需求。为了实现高效的长序列长度推理,压缩键值缓存至关重要
为了让LLM能处理更长、更复杂的任务,比如长篇小说总结、代码分析什么的,上下文窗口长度必须得加大!可是,内存不够怎么办??
别慌!加州伯克利出品,必属精品!KVQuant 就是一种专门针对LLM键值缓存(Key-Value Cache)的量化方法。它采用了几个超级厉害的技术,把内存占用量直接砍到骨折,同时还能保证模型精度几乎没有损失!?
Per-Channel Key Quantization: 这个技术专门对付那些喜欢搞事情的异常值通道,让它们乖乖听话,别再影响其他通道的量化效果
Pre-RoPE Key Quantization: RoPE(旋转位置编码)这玩意儿虽然厉害,但会把不同通道的值混在一起,给量化增加难度。这个技术巧妙地绕过了RoPE,让量化变得更轻松
nuqX:灵敏度加权的非均匀量化: 这个技术更灵活,更精准,利用校准数据离线推导出每层的非均匀数据类型,并根据每个通道或每个token进行缩放,以准确表示Key和Value分布,让量化标度点放置恰到好处,就像一位经验丰富的调酒师,精准调配出最完美的鸡尾酒!?
Per-Vector Dense-and-Sparse Quantization: 这个技术针对每个向量单独使用不同的异常值阈值,而不是对每一层使用单一的异常值阈值,从而更有效地识别和压缩异常值,并用稀疏表示存储它们,就像把房间里的杂物整理到收纳盒里,让空间变得更整洁,也更有效率!?
精度高到离谱: 在Wikitext-2和C4数据集上,用3比特量化,所有LLM(LLaMA, Llama-2, Llama-3, and Mistral)模型的困惑度(Perplexity:预测能力,准确率)下降都小于0.1,优于现有的方法!?
速度快到飞起: KVQuant的自定义CUDA内核让LLaMA-7B模型的矩阵向量乘法速度提升了1.7倍,简直是飞一般的感觉!⚡️
省内存省到极致: KVQuant直接把键值缓存压缩了4.8倍,让LLaMA-7B模型在单张A100-80GB GPU上就能跑100万长度的上下文,8张GPU甚至能跑1000万!?
长上下文长度评估: 使用LLaMA-2-7B-32K模型和Llama-2-70B-32K LongLoRA模型,评估了KVQuant在更长上下文长度下的性能。结果表明,即使在更长的上下文长度下,KVQuant也能保持较高的精度和检索性能
联合权重和KV缓存量化: 将KVQuant与现有的权重量化方法结合使用,发现即使权重也被量化到较低精度,KVQuant仍然能够保持较低的困惑度下降,证明了KVQuant与现有的权重量化方法的兼容性
性能分析和内存节省: 通过对KVQuant的内核进行基准测试,发现它能够在不同的序列长度下实现比基线fp16矩阵向量乘法更快的速度??
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-01-11
人工智能:大模型从技术到业务应用
2025-01-11
深度长文|Agentic AI 时代:NVIDIA 的技术革命与雄心
2025-01-11
AI是否会终结传统搜索引擎?
2025-01-11
亚马逊云科技:LLMOps驱动生成式 AI 应用的运营化
2025-01-11
蚂蚁集团基于 Ray 构建的分布式 AI Agent 框架
2025-01-10
我们即将进入 Agentic AI 时代 ,而第一个落地就是 Coding Agent
2025-01-10
2025 AI Agent迷局:谁在玩真的,谁在演戏?
2025-01-10
AGI 通用人工智能模型:基础理论与实现路径
2024-08-13
2024-05-28
2024-04-26
2024-08-21
2024-06-13
2024-08-04
2024-07-09
2024-09-23
2024-07-18
2024-04-11