微信扫码
与创始人交个朋友
我要投稿
本篇基于Prompt-Flow和GPT-4o。
RAG(Retrieval-Augmented Generation)的两种选择:Chunk vs QA
覆盖率提升:使用Chunk检索能有效提高覆盖率,且噪声的影响较小。尽管此前认为QA是最佳方案,但Chunk的效果反而更好。
泛化问题:QA的泛化能力有限。一段200字的文本Chunk可能包含A、B、C三类信息,如果QA索引需要标注多种业务场景,成本会非常高。但Chunk检索可直接覆盖多个业务。
混合方案:可以同时使用Chunk和QA,或基于相似度进行筛选,但对最终效果的提升有限。
问题扩写与原问题检索并行
背景:用户常提出缺乏上下文的简短问题,如“你觉得呢?”、“推荐哪个?”这种问题无法直接检索,需要扩写成更完整的上下文问题。
方案:向量检索对完整问题效果更好,但在用户频繁变更话题或内容过长时,扩写可能出现误删或误改。因此,仅依赖扩写会提高大模型生成错误答案的风险。
解决方式:同时对原问题和扩写后的问题进行检索,将结果合并去重,再根据最终文本进行回答。
多业务流路由分发
背景:当核心Agent提示词过长时,可能出现逻辑矛盾,导致输出错误。
方案:使用路由Agent解耦核心节点,通过其他任务Agent生成的变量来填充核心Agent中的内容。特定任务仅在触发路由时执行,不干扰关键流程。
自动化测试
背景:自动化测试能够省时省力。
方案:构建测试流程,设置两个Flow之间的交互,通过历史会话检测业务漏洞。但要设置终止条件,避免无休止的对话循环。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-05-28
2024-04-26
2024-08-21
2024-04-11
2024-07-09
2024-08-13
2024-07-18
2024-10-25
2024-07-01
2024-06-17