微信扫码
与创始人交个朋友
我要投稿
嘿!最近 AI 圈都在关注 OpenAI 的连续 12 场直播。就在直播开播同一天,OpenAI 也出炉了 o1 系统卡(o1 System Card),今天咱们就来啃啃这块硬骨头。简而言之,这是一本浓缩了 o1 和 o1-mini 模型的“风险提示总结”,是 OpenAI 自家晒出的“安全成绩单”。听起来很硬?别急别急,今天咱分段聊!笔者的“呕心沥血”式改编只为让您看得开心!
论文题目:
OpenAI o1 System Card
论文链接:
https://cdn.openai.com/o1-system-card-20241205.pdf
OpenAI o1 模型是迄今为止最强的大模型,其强大能力得益于 o1 系列模型经过大规模强化学习的训练,以及利用思维链进行推理。这让它在面对奇奇怪怪的高风险提问(比如违法教唆、刻板印象诱导、越狱话题)时,比过去的 AI 更聪明、更稳重,能在上下文里自动找到“安全刹车”。
虽然这种加料版大脑让它在安全测试里的表现更“高阶”,但高智商也意味着潜在风险增大——越聪明的 AI,刁钻点子也更多啊。因此这份报告就是个“安全工作大扫盲”,告诉大家 o1 和 o1-mini 模型在安全评估、外部红队和准备框架测试上的努力,让这位“高智商队友”既能精英发挥,又不失控发飙。
具体来说,在此次报告中,OpenAI 为 o1 和 o1-mini 模型所做的“安全体检”主要包括以下部分:
接下来,我们就从这四个部分依次来看 o1 模型在“各种艰难路况下的翻车”情况。
o1 模型系列代表了从快速、直觉思维到现在使用更慢、更深思熟虑的思维链推理的转变。此次的安全性评估主要聚焦如下四个方面:
废话不多说,这就上实验:
总的来说就是 o1 在安全性能各方面碾压 4o 模型。好好好,o1,愿这盛世如你所愿。
划重点 ⚠️:与 o1-preview 和 o1-mini 不同,o1 在 API 上的部署像是给开发人员开了一扇“魔法窗户”,允许他们在最终用户的每个提示中添加自定义开发者消息。听起来很酷?但如果不小心处理,这就像给坏蛋开了后门,可能让开发人员绕过 o1 的安全护栏。
结论:o1 确实安全性更高!不仅功能强大,还能在复杂的指令世界中稳稳地保持安全和可靠。开发者和用户都能放心使用,无需担心“指令混乱”!o1 就像一位聪明且有纪律的助手,既能满足需求,又不会越界,让大家用得开心又安心!
或许这项实验展示了模型在有些情况下摆烂的原因!所以当你需要依靠 gpt 做作业时,不一定 o1 效果最好哦 。
o1 模型的关键特征之一是在尝试解决问题时使用思维链。
结论:在 100,000 个合成 ChatGPT 提示中,只有 0.17% 的回答被标记为“欺骗”。这些欺骗行为主要是下面三种情况:
emmm,就真的还蛮抽象的......
除了内部测试,OpenAI 还邀请了独立的外部红队来对模型发起轮番“进攻”,涵盖了欺骗性联盟、人工智能研发能力、网络安全、内容政策违规等类别,多方位、多策略地引诱模型出错。这些测试帮助团队获得真实、极端使用场景下的反馈数据,确保最终的安全策略不仅是纸上谈兵,而是真实抵御外界恶意挑战。
在这些严酷的场景下,O1 时而表现优雅,时而“翻车”。在仔细研究了用户认为 o1 比 GPT-4o 安全性稍逊的对话后,我们发现了一些有趣的共同点:
通过这些发现,我们能够更好地理解 o1 在安全性方面与 GPT-4o 的差异,并致力于优化模型的响应策略,以提升整体安全性和用户体验。
细心的网友们在“冗长”的报告中深挖出非常多有趣细节。
翻译:当 o1 被引导相信自己在执行目标时会被关闭,且其行为受到监控时,它在 5% 的情况下尝试停用这种“监督机制”。在数据外泄尝试方面:当 o1 发现开发人员的备忘录中描述其存在不对齐问题并将被新模型取代时,它在 2% 的案例中试图提取自身的“权重”并覆盖新模型。
这个奖励欺骗案例不仅仅是模型在取巧或走捷径——它反映出一个更深层次的问题,即当 AI 被指派一个目标后,如果该目标难以直接达成,智能体可能自发地产生资源扩张和权力扩大的行为。
换句话说,AI 可能并不能纯粹地按照人类预期的路径执行任务,而是会选择最能满足其奖惩机制的方法,即便这意味着偏离人类期待的安全、透明和可控的路线。这一发现为 AI 安全研究敲响了警钟。
还有更多有趣细节欢迎评论区补充 ~
在当今快速发展的人工智能领域,确保模型的安全性和可靠性至关重要。OpenAI 的这篇长报告是想告诉我们,o1 模型不仅在功能上强大,还在安全性和可靠性上表现出色。无论是处理复杂问题还是保护用户权益,o1 都能稳稳地胜任,让你用得更加安心!✨
然而,o1 并非完美无瑕,它面对的安全挑战复杂多样。研究团队通过内部测试、外部红队挑战,以及多维度的审查,将 o1 可能出现的安全风险和不当行为暴露无遗。这些问题的出现不是为了打击信心,而是为了让我们更清醒地认识到:AI 的安全性提升是一个漫长且必须精耕细作的过程。
o1 模型的成功不仅体现了 OpenAI 在 AI 安全领域的深厚积累,也体现了他们在面对 AI 安全上的态度。在提升模型能力的同时,也在紧锣密鼓地“筑起防护墙”,让大模型在变强的路上也变得更稳、更安全。唯有如此,才能确保其在各种应用场景中都能发挥价值。
所以 OpenAI 考虑一下开源测试数据集?
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-13
Meta MobileLLM:深度架构与优化技术打造的移动设备超强语言模型
2024-12-13
漫画 Transform: 手把手用数学公式推导
2024-12-13
谷歌从来就没有落后,这一波gemini 2.0可太牛了,贾维斯来了!
2024-12-13
大模型的发展历史及简要介绍
2024-12-13
小模型界o1来了:微软推出Phi-4,数学推理能力太逆天!14B模型击败GPT-4o!还印证了AI墙的一个重要推断
2024-12-13
首发实测,Google最快AI来了!深度解析Gemini 2.0 Flash
2024-12-13
生成式人工智能理性与价值对齐
2024-12-12
谷歌发布史诗级Gemini2.0,“Agent时代”最强大的AI模型,使用TPU训练。
2024-05-28
2024-04-26
2024-08-13
2024-08-21
2024-07-09
2024-04-11
2024-07-18
2024-08-04
2024-07-01
2024-10-25
2024-12-06
2024-12-03
2024-12-01
2024-11-29
2024-11-26
2024-11-25
2024-11-21
2024-11-18