微信扫码
与创始人交个朋友
我要投稿
Phi-4 是微软研究院开发的一种大语言模型,拥有 140 亿参数,其训练方案以数据质量为核心,与传统基于网页内容或代码的预训练方法不同,Phi-4 在整个训练过程中战略性地整合了合成数据。相比于其前代模型 Phi-3,Phi-4 在推理能力和 STEM 问答能力上取得了显著提升,甚至在某些基准测试中超越了其教师模型 GPT-4o。
本文详细分析 Phi-4 的创新点、技术细节及其在多个基准测试中的表现,并探讨其局限性和未来发展方向。
Phi-4 的训练数据主要由高质量的合成数据组成,使用以下技术生成:
合成数据的优势在于:
除了合成数据,Phi-4 还整合了高质量的有机数据,包括:
Phi-4 的后训练阶段包括:
Phi-4 基于仅解码器的 Transformer 架构,具有以下特点:
Phi-4 在多个基准测试中表现优异,尤其在 STEM 和推理任务上:
Phi-4 在 2024 年 AMC-10 和 AMC-12 数学竞赛中表现出色,证明其数学推理能力并非由于数据污染或过拟合。
Phi-4 在长上下文任务(如文档摘要和复杂问答)中表现优异,特别是在 16K 上下文长度下,其性能超越了许多更大规模的模型。
Phi-4 的成功表明,通过创新的数据生成和训练方法,即使是参数规模较小的模型也能在特定领域达到或超越更大模型的性能。未来,随着数据质量和训练技术的进一步提升,Phi-4 有望在更多领域展现其潜力。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-21
OpenAI 铺垫了12天发布的 o3 到底咋样?
2024-12-21
昨天,Google 发布了两个重磅的 AI 生成模型
2024-12-21
对话面壁智能刘知远:Densing Law是大模型能力的另一个度量衡|甲子光年
2024-12-21
Gemini 2.0重磅来袭!AI实力再进化,你准备好了吗?
2024-12-21
Meta推出连续思维链Coconut:突破CoT局限,探索 LLM 在潜在空间中的推理
2024-12-21
大模型AI应用:架构设计到AI搜索
2024-12-21
再谈大模型向量,由向量检索引起的思考
2024-12-21
对话『火山引擎』总裁谭待:字节AI“逆袭 ” 的这一年
2024-05-28
2024-04-26
2024-08-13
2024-08-21
2024-07-09
2024-04-11
2024-08-04
2024-06-13
2024-07-18
2024-07-01
2024-12-21
2024-12-21
2024-12-16
2024-12-06
2024-12-03
2024-12-01
2024-11-29
2024-11-26