微信扫码
添加专属顾问
我要投稿
解读DeepSeek-V3模型的官方报告,揭示开源大型语言模型的最新突破。 核心内容: 1. DeepSeek-V3的开发背景与目标:提升开源模型性能,经济高效的训练成本 2. 模型架构创新:Transformer框架下的多头潜在注意力和混合专家优化 3. DeepSeek-V3的性能目标:在特定领域接近闭源模型水平,超越其他开源模型
DeepSeek-V3 官方报告解读
https://arxiv.org/abs/2412.19437
近年来,大型语言模型(LLM)发展迅速,不仅闭源模型(如 GPT-4o、Claude-3.5-Sonnet)表现强劲,开源模型也在不断进步,比如 DeepSeek 系列、LLaMA 系列等。DeepSeek-V3 的目标是进一步提升开源模型的能力,缩小与闭源模型的差距,同时保持训练成本的经济性。
DeepSeek-V3 的架构基于 Transformer 框架,但加入了一些创新设计,主要包括以下几个关键部分:
DeepSeek-V3 的训练分为三个阶段:预训练(Pre-Training)、长上下文扩展(Long Context Extension)和后训练(Post-Training)。训练成本总计 278.8 万 H800 GPU 小时,假设每小时 2 美元,费用约 557.6 万美元。
DeepSeek-V3 的训练效率得益于硬件、算法和框架的协同优化:
DeepSeek-V3 在多个基准测试上进行了评估,分为基模型(base model)和聊天模型(chat model)两部分。
DeepSeek-V3 是目前最强大的开源语言模型,特别是在代码和数学领域,性能接近甚至超过闭源模型(如 GPT-4o、Claude-3.5-Sonnet)。它的训练成本低(557.6 万美元),得益于 FP8 训练、通信优化和架构创新。DeepSeek 团队秉持开源精神,致力于推动 AGI(通用人工智能)发展,未来将继续优化架构、数据和推理能力,为开源社区带来更多突破。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-21
AI大模型火热,将 Hugging Face大模型转换为 GGUF 为何受关注?
2025-04-21
82.9K star!全平台AI助手神器,一键部署轻松搞定!
2025-04-21
微软又整活!MarkItDown-MCP:网页/文件一键转Markdown,还能直接喂给AI用!(支持Claude)
2025-04-21
清华大学未来实验室:开源多智能体协作框架!
2025-04-20
谷歌Agent2Agent协议:AI协作的新曙光
2025-04-19
DeepSeek+Dify 构建本地知识库,真香!
2025-04-19
微软开源实时交互模型:提升Agent动态复杂处理能力
2025-04-19
微软最新 Playwright MCP 服务器强势来袭?
2025-01-01
2024-07-25
2025-01-21
2024-05-06
2024-09-20
2024-07-20
2024-06-12
2024-07-11
2024-08-13
2024-12-26
2025-04-21
2025-04-19
2025-04-17
2025-04-15
2025-04-13
2025-04-10
2025-04-07
2025-04-03