微信扫码
添加专属顾问
我要投稿
深入解析OpenManus的内部结构和功能实现,带你一探智能代理的奥秘。 核心内容: 1. OpenManus概览与目录结构解析 2. 核心Agent类的设计与功能 3. 代码调用逻辑梳理与任务执行流程
async run(request):
if state != IDLE:
raise RuntimeError
if request:
update_memory(USER, request)
async with state_context(RUNNING):
while current_step < max_steps and state != FINISHED:
current_step += 1
step_result = await step()
if is_stuck():
handle_stuck_state()
results.append(step_result)
if current_step >= max_steps:
state = IDLE
results.append("Terminated: Reached max steps")
return "\n".join(results)
async step(): should_act = await think() # 调用子类的 think() if should_act: return await act() # 调用子类的 act() else: return "Thinking complete - no action needed"
async run(request):
if request:
await create_initial_plan(request)
return await super().run() # 调用 ToolCallAgent.run() -> ReActAgent.run() -> BaseAgent.run()
async create_initial_plan(request):
# 1. 构造消息,让 LLM 创建计划
messages = [...]
response = await llm.ask_tool(..., tool_choice=ToolChoice.AUTO)
# 2. 处理 LLM 的响应,提取工具调用(应该是 planning 工具的调用)
for tool_call in response.tool_calls:
if tool_call.function.name == "planning":
result = await execute_tool(tool_call) # 执行 planning 工具
# 3. 将工具执行结果(计划)存入内存
update_memory(TOOL, result, tool_call_id=tool_call.id)
async think():
prompt = f"CURRENT PLAN STATUS:\n{await self.get_plan()}\n\n{self.next_step_prompt}"
self.messages.append(Message.user_message(prompt))
self.current_step_index = await self._get_current_step_index()
result = await super().think() # 调用 ToolCallAgent 的 think()
if result and self.tool_calls:
# 记录工具和步骤的关联
latest_tool_call = self.tool_calls[0]
if latest_tool_call 不是 planning tool 且 不是 special tool:
self.step_execution_tracker[latest_tool_call.id] = {
"step_index": self.current_step_index,
"tool_name": latest_tool_call.function.name,
"status": "pending"
}
return result
async act():
result = await super().act() # 调用 ToolCallAgent 的 act()
if self.tool_calls:
latest_tool_call = self.tool_calls[0]
if latest_tool_call.id in self.step_execution_tracker:
self.step_execution_tracker[latest_tool_call.id]["status"] = "completed"
self.step_execution_tracker[latest_tool_call.id]["result"] = result
if latest_tool_call 不是 planning tool 且 不是 special tool:
await self.update_plan_status(latest_tool_call.id)
return result
async update_plan_status(tool_call_id):
# 1. 检查 tool_call_id 是否在 tracker 中,以及状态是否为 completed
# 2. 调用 planning 工具的 mark_step 命令,将对应步骤标记为 completed
async _get_current_step_index():
# 1. 获取当前计划 (文本)
# 2. 解析计划文本,找到第一个 [ ] 或 [→] 的步骤
# 3. 调用 planning 工具的 mark_step 命令,将当前步骤设置为 in_progress
# 4. 返回步骤索引
async think(): self.working_dir = await self.bash.execute("pwd") # 获取当前工作目录 self.next_step_prompt = self.next_step_prompt.format(current_dir=self.working_dir) # 更新提示 return await super().think() # 调用 ToolCallAgent 的 think()
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-18
7000字详解火爆全网的Claude 模型上下文协议 (MCP)
2025-03-17
不到 4 万元的 DeepSeek-R1-671B-Q8 部署方案
2025-03-17
OWL深入分析,打造个人通用Agent
2025-03-17
manus没有秘密?沙盒代码逆向完成,开源~
2025-03-17
小参数出奇迹!360开源最强14B推理模型,端侧部署春天来了?
2025-03-17
大模型工具Dify-窥探
2025-03-17
火爆 AI 编程圈的 MCP 到底是个什么东西?
2025-03-17
怎样使用AnythingLLM 和 DeepSeek 创建私有智能体
2025-01-01
2024-07-25
2025-01-21
2024-05-06
2024-09-20
2024-07-20
2024-06-12
2024-08-13
2024-07-11
2024-12-26
2025-03-17
2025-03-17
2025-03-13
2025-03-13
2025-03-08
2025-03-03
2025-03-02
2025-03-01