微信扫码
添加专属顾问
我要投稿
Langchain的新框架,LangGraph结合3个突破性的框架:Corrective Retrieval Augmented Generation (CRAG,自纠正检索增强生成), Self-Reflective Retrieval-Augmented Generation (Self-RAG,自反射检索增强生成) , Adaptive QA framework(自适应 QA 框架)。重新定义语言模型的能力。
https://ai.gopubby.com/unifying-rag-frameworks-harnessing-the-power-of-adaptive-routing-corrective-fallback-and-1af2545fbfb3
将 CRAG、Self-RAG、Adaptive RAG 集成到现有语言模型中可以带来诸多好处
示例代码太长,详见官方jupyter notebook demo,地址如下:
https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_rag_agent_llama3_local.ipynb
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-20
谈谈RAG 的四个级别
2025-04-20
大模型能像专业分析师一样提取用户需求吗?
2025-04-19
基于Embedding分块 - 文本分块(Text Splitting),RAG不可缺失的重要环节
2025-04-19
RAG升级-基于知识图谱+deepseek打造强大的个人知识库问答机器人
2025-04-19
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
2025-04-19
低代码 RAG 只是信息搬运工,Graph RAG 让 AI 具备垂直深度推理能力!
2025-04-18
微软PIKE-RAG全面解析:解锁工业级应用领域知识理解与推理
2025-04-18
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-20
2025-04-19
2025-04-18
2025-04-16
2025-04-14
2025-04-13
2025-04-11
2025-04-09