微信扫码
与创始人交个朋友
我要投稿
在Llamaindex的全栈项目分享会上,我多次提到要优先使用RAG,尽量不要微调或增量,大规模的+数据质量错位的,微调+增量技术,不靠谱,很难收到结果!
在会议末尾讲了一下什么情况下用RAG,也分享了一些RAG的坑和经验,刚刚不想让会议显得太长,我这里再补充一下:
重申技术背后:
RAG技术是通过从外部来源检索信息,将内容添加到提示中,然后调用LLM!
目标是为模型提供其参数化上下文(或基本知识)中可能没有的信息。
存在问题与经验:
① 交互问题
通常需要三四轮对话才能理解客户的问题,因为一开始消息没有深入,都是客套话!没用!
当然,可以设置马上开始检索,但!过早检索数据时,检索的文本没有足够上下文,是很容易检索到垃圾信息的,除非你可以一条提示词,办完事!否则,这时,大模型的注意力集中在错误内容上,降低了生成的准确度!
② 尝试优化想法
基于以上,我们设计了一个确定对话意图过程,然后切换到对应+专门的RAG提示词!有效,但很呆!
③ 最终方案
我们需要多个提示词和状态来模拟对话!基于以上的升级!
LLM Agent(带工具)
与一组操作(工具)配对的提示词
在对话过程中,提示可以返回一个响应,指示应该调用一个带有参数的操作
例如:管理代理的软件执行该操作(“调用baidu.com”)并将结果作为新消息返回到提示词。使用新结果继续与用户进行对话!
④ RAG有两种模式的
第一种:静态,使用提示词和已向量的数据,检索交互
第二种:动态,一边交互,一边把交互内容,生成搜索词,会呼吸的RAG,实现自主更新!提高生成质量!
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-26
GraphRAG和轻量级LightRAG技术及应用案例深度解析
2024-12-26
使用 Markdown 和 Gemini 为 RAG 解锁 PDF
2024-12-26
长文 | RAG的实战指南及探索之路
2024-12-26
2024年,百万上下文依然没有杀死RAG
2024-12-26
在推荐、RAG等业务中,如何完成亿级向量的快速检索?
2024-12-25
RAG 工程实践优化点及方法总结
2024-12-25
强化 RAG 应用:生成式 AI 返回准确率提升的高效策略与实践
2024-12-25
RAG开发中,如何用Milvus 2.5 BM25算法实现混合搜索
2024-07-18
2024-05-05
2024-06-20
2024-09-04
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-06-13
2024-07-07
2024-12-26
2024-12-24
2024-12-21
2024-12-14
2024-12-01
2024-11-27
2024-11-25
2024-11-06