微信扫码
与创始人交个朋友
我要投稿
从现有候选文档集推断出模式。您可以选择稍后编辑此模式。
根据指定的模式(无论是从上一步推断出来的、由人类指定的,或两者兼有)从一组文档中提取值。
LlamaExtract 目前处于 beta 阶段,这意味着它是一个我们正在努力改进的实验性功能,使其更普遍可扩展和可用。请将任何问题报告到我们的 Github!
我们正在对 UI 进行一些核心改进,例如将模式推断和提取解耦,允许用户预定义模式等。有关更多灵活性,请查看下面的 API。
pip install llama-extract
pythonfrom llama_extract import LlamaExtract
extractor = LlamaExtract()
extraction_schema = extractor.infer_schema("Test Schema", ["./file1.pdf","./file2.pdf"])
from pydantic import BaseModel, Field
classResumeMetadata(BaseModel):
"""Resume metadata."""
years_of_experience: int= Field(..., description="Number of years of work experience.")
highest_degree: str= Field(..., description="Highest degree earned (options: High School, Bachelor's, Master's, Doctoral, Professional)")
professional_summary: str= Field(..., description="A general summary of the candidate's experience")
extraction_schema = extractor.create_schema("Test Schema", ResumeMetadata)
无论您如何获得模式,现在都可以执行提取:
extractions = extractor.extract(extraction_schema.id, ["./file3.pdf","./file4.pdf"])
您可以看到提取的数据:
print(extractions[0].data)
场景用例
简历:从候选人的个人资料中提取结构化注释,如学校、工作经历、工作经验年限。
收据和发票:提取行项目、总价和其他数字。
产品页面:根据用户定义的模式结构化和分类您的产品。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-15
复旦发布:最佳RAG方案
2024-11-15
破解PDF解析难题:RAG中高效解析复杂PDF的最佳选择
2024-11-15
RAG技术全解析:从基础到前沿,掌握智能问答新动向
2024-11-15
RAG在未来会消失吗?附RAG的5种切分策略
2024-11-15
HtmlRAG:利用 HTML 结构化信息增强 RAG 系统的知识检索能力和准确性
2024-11-15
打造自己的RAG解析大模型:表格数据标注的三条黄金规则
2024-11-13
RAGCache:让RAG系统更高效的多级动态缓存新方案
2024-11-13
Glean:企业AI搜索,估值46亿美元,ARR一年翻4倍
2024-07-18
2024-07-09
2024-05-05
2024-07-09
2024-05-19
2024-06-20
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21