微信扫码
添加专属顾问
我要投稿
MCP协议如何让LLM从"空谈家"变"实干派",以及为何现实项目中Tool成为主角。 核心内容: 1. MCP三大核心概念:Resources、Tools和Prompts的详细拆解 2. Tool在现实项目中的优势和局限性分析 3. Prompts和Resources的潜力与生态成熟度探讨
核心作用:
典型场景:
"Resources让LLM不再依赖训练数据,而是随时调用最新信息。"
略过但关键:
# MCP协议定义的Tool(YAML格式)
- name: "send_email"
endpoint: "http://api.example.com/mail"
params: ["recipient", "subject", "content"]
"Tools是LLM的'双手',把'我想发邮件'变成实际动作。"
特殊之处:
"你是一名客服,请用友好语气回答关于{product}的问题,参考{resources},最后询问用户是否需要进一步帮助。"
prompt = get_prompt("客服模板", product="iPhone15", resources="最新产品手册")
为什么归入MCP协议
{{call tool=search_docs}}
,直接触发工具调用。"Prompts是LLM的'台词本',把自由发挥变成可控的工业化生产。"
核心结论:
理论:预定义交互模板,让 LLM 按剧本走。 ? 现实:
✅ Tool 替代方案:
def generate_response(prompt_template, **kwargs):
return llm.run(prompt_template.format(**kwargs))
理论:动态数据源,让 LLM 实时获取最新信息。 ? 现实:
def query_knowledge_base(question):
docs = vector_db.search(question)
return format_docs(docs)
customer_service_prompt
)。query_latest_news
)。客服话术模板
、代码审查模板
等,直接调用,不用重复写。总结:
(所以,别纠结,先用 Tool 莽穿一切! ?)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-19
RAG升级-基于知识图谱+deepseek打造强大的个人知识库问答机器人
2025-04-19
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
2025-04-19
低代码 RAG 只是信息搬运工,Graph RAG 让 AI 具备垂直深度推理能力!
2025-04-18
微软PIKE-RAG全面解析:解锁工业级应用领域知识理解与推理
2025-04-18
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
2025-04-18
Firecrawl:颠覆传统爬虫的AI黑科技,如何为LLM时代赋能
2025-04-18
什么是RAG与为什么要RAG?
2025-04-18
Anthropic工程师揭秘高效AI Agent的三大秘诀
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-19
2025-04-18
2025-04-16
2025-04-14
2025-04-13
2025-04-11
2025-04-09
2025-04-07