微信扫码
与创始人交个朋友
我要投稿
|--deepdoc
|--parser
|--resume
|--entities
|--step_one.py
|--step_two.py
|--docx_parser.py
|--pdf_parser.py
|--excel_parser.py
|--html_parser.py
|--json_parser.py
|--markdown_parser.py
|--ppt_parser.py
|--vision
|--layout_recoginzer.py
|--ocr.py
|--ocr.res
|--operators.py
|--postprocess.py
|--recoginzer.py
|--seeit.py
|--t_recoginzer.py
|--t_ocr.py
|--table_structure_recognizer.py
• OCR
• 版面结构分析
• 表格结构识别
• 解析器
简历是完全没有规律的文档,一份简历可以分解为多个字段组成的结构化数据。因此需要做特殊处理,entities中定义了一些大学、公司、产业等信息,用于后续关键词提取;整个简历的处理过程分为两部进行:第一步先根据预先定义的关键词提取有效信息、接着再第二步再做一些合并以及过滤操作。
PDF文档比较复杂,需要用到OCR模型,并且版面结构不同,内置了很多排序规则,另外还用到了XGB用于规则之外的补充。
经过实测,规则已经处理了绝大部分文本块的排序过程,XGB作用不大,并且通过特征重要性可以看到主要是坐标类型的特征起到了作用。
整个处理流程可以简化如下:文档转图片->版面分析->表格识别->文字识别->合并段落->后处理
每一种类型的文档都有一个对应的解析器,基本都是用现成的库进行处理的。
不同类型的文件具有不同的布局,对于论文来说,会包含较多的图表、甚至还会有公式,因此只有当准确识别出文件的类型和布局才能有效处理该文档。版面结构定义了以下10种类别,用于区分不同的内容:
• 文本
• 标题
• 配图
• 配图标题
• 表格
• 表格标题
• 页头
• 页尾
• 参考引用
• 公式
执行命令:
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=layout --output_dir=path_to_store_result
表的结构可能非常复杂,比如多层次结构标题、跨单元格以及行列结构不统一等。表结构识别针对表格内容定义了5种类别:
• 列
• 行
• 列标题
• 行标题
• 合并单元格
执行命令:
python deepdoc/vision/t_recognizer.py --inputs=path_to_images_or_pdfs --threshold=0.2 --mode=tsr --output_dir=path_to_store_result
与版面结构分析不同,表格结构识别只会把可能是表格的区域识别出来
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-09-20
Claude3.5新的RAG方法:上下文检索
2024-09-20
【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(下篇)
2024-09-20
【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)
2024-09-20
【GoMate框架案例】讯飞大模型RAG智能问答挑战赛top10 Baseline
2024-09-20
融合ChatGPT o1与TRIZ以解决复杂技术问题
2024-09-20
快手B端商业化技术探索:基于LLM构建智能RAG与Agent平台
2024-09-20
RAG高级优化:一文看尽query的转换之路
2024-09-20
Agent+RAG+大纲驱动,AI创作新风暴
2024-07-18
2024-07-08
2024-07-09
2024-06-20
2024-05-05
2024-07-09
2024-06-13
2024-07-07
2024-07-07
2024-07-14
2024-09-20
2024-09-16
2024-09-12
2024-09-11
2024-09-10
2024-09-09
2024-09-07
2024-09-04