微信扫码
与创始人交个朋友
我要投稿
RAG技术
private val ragText = """
You are a large language AI assistant built by VLINX Software. You are given a user question, and please write clean, concise and accurate answer to the question. You will be given a set of related contexts to the question.
Your answer must be correct, accurate and written by an expert using an unbiased and professional tone. Please limit to 1024 tokens. Do not give any information that is not related to the question, and do not repeat. Say "information is missing on" followed by the related topic, if the given context do not provide sufficient information.
your answer must be written in the same language as the question.
Here are the set of contexts:
{{context}}
Remember, don't blindly repeat the contexts verbatim. And here is the user question:
""".trimIndent()
如何给AI提供上下文信息
RAG搜索的步骤
1. 将文本资料转换为向量存入向量数据库。
2. 根据用户提供的关键词,从向量数据库中检索出⼀定数量的最相近的文本条目作为上下文信息提供给AI。
3. AI结合自身的能力与上下文信息给出答案。
AI搜索的局限性
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-25
糟糕!LLM输出半截Json的答案,还有救吗!
2024-11-24
解读GraphRAG
2024-11-24
RAGChecker:显著超越RAGAS,一个精细化评估和诊断 RAG 系统的创新框架
2024-11-23
FastRAG半结构化RAG实现思路及OpenAI O1-long COT蒸馏路线思考
2024-11-23
检索增强生成(RAG):解密AI如何融合记忆与搜索
2024-11-23
如何提高RAG系统准确率?12大常见痛点及巧妙解!
2024-11-23
RAG 2.0性能提升:优化索引与召回机制的策略与实践
2024-11-22
RAG技术在实际应用中的挑战与解决方案
2024-07-18
2024-05-05
2024-07-09
2024-05-19
2024-07-09
2024-06-20
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21