微信扫码
与创始人交个朋友
我要投稿
论文中文名:设计 RAG 系统时需要考虑的七个失败点
论文地址:https://arxiv.org/abs/2401.05856
一译中英对照版:https://yiyibooks.cn/arxiv/2401.05856v1/index.html
如果你也想使用 AI 快速阅读论文,可参考:《AI 助力问题驱动式学习》
论文转思维导图速览:
如果你想了解该图是如何生成的,可以阅读:《AI 应用之文章转脑图的 N 种姿势》
在这篇论文中,Scott Barnett 等人探讨了增强检索(Retrieval-Augmented Generation, RAG)系统在工程实践中可能遇到的挑战和失败点。RAG 系统通过结合信息检索和大型语言模型(LLM)的生成能力,旨在提供准确、上下文相关的回答。然而,RAG 系统在信息检索的固有局限性和对 LLM 的依赖上存在问题。本文通过三个不同领域的案例研究,分享了在设计 RAG 系统时需要考虑的七个失败点,并提出了软件工程社区可能的研究方向。
论文通过三个案例研究展示了RAG系统在不同领域的应用和遇到的挑战:
1. FP1 缺少内容(Missing Content)当用户提出的问题无法从现有的文档中找到答案时,RAG系统可能无法提供有用的回应。理想情况下,系统会回复类似于“对不起,我不知道”的回答。然而,如果问题与内容相关但没有直接答案,系统可能会错误地生成一个看似合理但实际错误的回答。
2. FP2 错过高排名文档(Missed the Top Ranked Documents)即使文档中包含了问题的答案,但如果该文档的排名没有足够高,它可能不会被返回给用户。理论上,所有文档都应参与排名并用于后续步骤,但在实践中,通常只返回基于性能选定的前K个文档。
3. FP3 上下文缺失(Not in Context)检索到的包含答案的文档可能没有被纳入生成答案的上下文中。这通常发生在从数据库检索到许多文档时,需要通过整合过程来提取答案。
4. FP4 提取失败(Not Extracted)尽管答案存在于上下文中,但大型语言模型(LLM)可能未能正确提取出正确答案。这种情况通常发生在上下文中存在太多噪声或矛盾信息时。
5. FP5 格式错误(Wrong Format)当问题需要以特定格式(如表格或列表)提取信息时,如果LLM忽略了这一指令,就会产生格式错误。
6. FP6 具体性错误(Incorrect Specificity)返回的答案可能不够具体或过于具体,无法满足用户的需求。这发生在RAG系统设计者对给定问题有预期结果时,例如教师为学生提供的答案不仅应该是答案本身,还应该是具体的教育内容。
7. FP7 答案不完整(Incomplete)不完整的答案虽然不是错误,但它们遗漏了一些信息,即使这些信息在上下文中可用并且可以被提取。例如,当用户问到“文档A、B和C中涵盖了哪些关键点?”时,更好的做法是分别提问这些问题。
分块(Chunking) 是RAG系统中的关键步骤,它涉及将文档分割成更小的部分或“块”,这些块随后被转换成嵌入向量以用于检索。分块的质量直接影响到检索过程和嵌入的质量,进而影响文档与用户查询之间的匹配度。论文中提到了两种分块方法:
优化分块策略需要考虑以下方面:
进一步的研究应该探索这些方法之间的权衡,并评估它们对关键下游过程(如嵌入质量和相似性匹配)的影响。
嵌入(Embeddings) 是文档块的压缩语义表示,通常是一个数值向量。嵌入的生成对于文档检索至关重要,因为它们决定了文档与查询之间的相似度计算。优化嵌入策略涉及:
RAG系统和微调是两种不同的方法,用于定制大型语言模型以适应特定领域的需求。微调涉及在特定领域的数据集上继续训练模型,而RAG系统则利用检索机制来提供上下文信息,然后由LLM生成答案。
比较研究应该系统地评估这两种方法在以下方面的差异:
RAG 系统的测试和监控是软件工程中的新兴领域,需要特定的方法和工具来确保系统的质量和性能。
研究应该探索以下方面:
通过这些研究,可以为 RAG 系统的开发和维护提供更清晰的指导,并帮助实践者构建更加健壮和有效的系统。
论文的结论部分强调了 RAG 系统作为结合大型语言模型的新型信息检索技术的重要性,并指出软件工程师在实施这些系统时面临的挑战。作者通过三个案例研究,包括对 15,000 份文档和 1000 个问题的实证调查,为实践者提供了实施RAG系统时可能遇到的挑战的指南。同时,论文提出了未来研究方向,包括分块和嵌入策略、RAG 与微调的比较,以及 RAG 系统的测试和监控。最后,作者指出这是首次从软件工程视角对 RAG 系统进行的系统性研究,并强调了大型语言模型将持续发展,为工程师和研究人员带来新的研究兴趣点。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-08
一篇大模型RAG最新综述
2024-11-08
微软GraphRAG 0.4.0&DRIFT图推理搜索更新
2024-11-08
小模型在RAG(Retrieval-Augmented Generation)系统中的应用:提升效率与可扩展性的新路径
2024-11-08
RAG评估:RAGChecker重磅发布!精准诊断RAG系统的全新细粒度框架!
2024-11-07
蚂蚁KAG框架核心功能研读
2024-11-07
为什么它是从PDF中解析数据的最佳工具?PDF文件解析新选择,构建LLM 大模型数据基础
2024-11-06
RAG vs ICL:AI大模型的记忆术和临场发挥,谁才是最强辅助?
2024-11-06
Long2RAG:评估长上下文与长形式检索增强生成与关键点召回
2024-07-18
2024-07-09
2024-07-09
2024-05-05
2024-05-19
2024-07-07
2024-06-20
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21