微信扫码
添加专属顾问
我要投稿
pip install -U optimum[neural-compressor] intel-extension-for-transformers
def quantize(model_name: str, output_path: str, calibration_set: "datasets.Dataset"):model = AutoModel.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)def preprocess_function(examples):return tokenizer(examples["text"], padding="max_length", max_length=512, truncation=True)vectorized_ds = calibration_set.map(preprocess_function, num_proc=10)vectorized_ds = vectorized_ds.remove_columns(["text"])quantizer = INCQuantizer.from_pretrained(model)quantization_config = PostTrainingQuantConfig(approach="static", backend="ipex", domain="nlp")quantizer.quantize(quantization_config=quantization_config,calibration_dataset=vectorized_ds,save_directory=output_path,batch_size=1,)tokenizer.save_pretrained(output_path)
# 数据集地址https://huggingface.co/datasets/allenai/qasper
from optimum.intel import IPEXModelmodel = IPEXModel.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")inputs = tokenizer(sentences, return_tensors="pt")with torch.no_grad():outputs = model(**inputs)# get the [CLS] tokenembeddings = outputs[0][:, 0]
从上面的结果可以看出,通过量化后模型的延迟和吞吐量都有大幅提升。大家是不是学会的呢。下篇我们继续介绍一个相关工具,辅助我们高效管理RAG流程。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-28
先分块再向量化已经过时!先embedding再chunking才是王道
2025-10-28
AI检索增强中路由模型的使用
2025-10-28
HybRAG:混合文本和知识图谱的RAG框架
2025-10-28
“生成幻觉”(Hallucination)和“知识时效性”不足引发的架构范式变革
2025-10-27
RAG优化技巧
2025-10-26
关于RAG系统在多轮对话中的问题改写(优化)方法—使用历史记录改写问题
2025-10-26
你的RAG知识库,真的“喂”对数据了吗?拆解dify分段策略,告别无效召回
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-09-15
2025-09-02
2025-08-05
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-09-08
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20