微信扫码
与创始人交个朋友
我要投稿
StructRAG 框架概述
选择最佳结构类型至关重要,因为它直接影响后续模块的有效性。为了训练路由器,作者提出了一种基于具有偏好优化 (DPO) 算法的决策转换器的新方法,该方法遵循强化学习原则,不需要额外的奖励模型。router 的训练数据是通过 synthesizing-simulating-judging pipeline 生成的,该管道为各种任务和结构类型创建高质量的 synthetic preference 对。
分散知识结构器:一旦确定了最佳结构类型,分散知识结构器就会发挥作用。该模块负责提取散布在原始文档中的相关信息,并将其重建为所选格式的结构化知识。Structurizer 利用 LLM 强大的理解和生成功能来执行这项复杂的任务。
该利用器采用基于 LLM 的方法来促进问题分解、精确知识提取和最终答案推理。它首先根据结构化知识的整体描述,将原始问题分解为几个更简单的子问题。然后,它从结构化知识中提取每个子问题的精确知识。最后,utilizer 整合所有子问题及其相应的精确知识以生成最终答案。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-24
除了混合搜索,RAG 还需要哪些基础设施能力?
2024-12-24
万字长文梳理 2024 年的 RAG
2024-12-24
面向医疗场景的大模型 RAG 检索增强解决方案
2024-12-23
一文详谈20多种RAG优化方法
2024-12-23
深入RAG工作流:检索生成的最佳实践
2024-12-23
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”
2024-12-23
使用 Lang Chain 和 Lang Graph 构建多代理 RAG :分步指南 + Gemma 2
2024-12-23
RAG评估框架:RAG Triad框架及其实战
2024-07-18
2024-05-05
2024-06-20
2024-09-04
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-07-07
2024-06-13