微信扫码
添加专属顾问
我要投稿
StructRAG 框架概述
选择最佳结构类型至关重要,因为它直接影响后续模块的有效性。为了训练路由器,作者提出了一种基于具有偏好优化 (DPO) 算法的决策转换器的新方法,该方法遵循强化学习原则,不需要额外的奖励模型。router 的训练数据是通过 synthesizing-simulating-judging pipeline 生成的,该管道为各种任务和结构类型创建高质量的 synthetic preference 对。
分散知识结构器:一旦确定了最佳结构类型,分散知识结构器就会发挥作用。该模块负责提取散布在原始文档中的相关信息,并将其重建为所选格式的结构化知识。Structurizer 利用 LLM 强大的理解和生成功能来执行这项复杂的任务。
该利用器采用基于 LLM 的方法来促进问题分解、精确知识提取和最终答案推理。它首先根据结构化知识的整体描述,将原始问题分解为几个更简单的子问题。然后,它从结构化知识中提取每个子问题的精确知识。最后,utilizer 整合所有子问题及其相应的精确知识以生成最终答案。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-10-16
用合成数据评测 RAG 系统:一份可直接上手的 DeepEval 实操指南
2025-10-16
2025 年 RAG 最佳 Reranker 模型
2025-10-16
HiRAG问答流程深入分析
2025-10-13
LightRAG × Yuxi-Know——「知识检索 + 知识图谱」实践案例
2025-10-13
PG用户福音|一次性搞定RAG完整数据库套装
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-09-15
2025-08-05
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-08-28
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20