微信扫码
与创始人交个朋友
我要投稿
GPT Researcher[1] 是一个基于大型语言模型(LLM)的自动化智能体,目标是对任何给定主题进行在线全面研究。
该智能体能够生成详细、事实和无偏见的研究报告,并提供定制化选项,以关注相关资源和大纲。
GPT Researcher的设计灵感来源于最新的Plan-and-Solve和RAG论文,目标是解决错误信息、速度、确定性和可靠性问题,通过并行化智能体工作而不是同步操作,提供更稳定的性能和更快的速度。
GPT Researcher适用于需要快速、准确和全面研究的个人和组织,尤其是在需要客观结论和详细报告的场合。
git clone https://github.com/assafelovic/gpt-researcher.git
cd gpt-researcher
.env
文件中。export OPENAI_API_KEY={Your OpenAI API Key here}
export TAVILY_API_KEY={Your Tavily API Key here}
pip install -r requirements.txt
python -m uvicorn main:app --reload
http://localhost:8000
并在任何浏览器上进行研究。pip install gpt-researcher
from gpt_researcher import GPTResearcher
query = "为什么Nvidia股票上涨?"
researcher = GPTResearcher(query=query, report_type="research_report")
# 进行研究
research_result = await researcher.conduct_research()
# 写报告
report = await researcher.write_report()
.env.example
文件,添加您的API密钥到克隆的文件并保存为.env
。docker-compose up --build
注:本文内容仅供参考,具体项目特性请参照官方 GitHub 页面的最新说明。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-15
RAG技术全解析:从基础到前沿,掌握智能问答新动向
2024-11-15
RAG在未来会消失吗?附RAG的5种切分策略
2024-11-15
HtmlRAG:利用 HTML 结构化信息增强 RAG 系统的知识检索能力和准确性
2024-11-15
打造自己的RAG解析大模型:表格数据标注的三条黄金规则
2024-11-13
RAGCache:让RAG系统更高效的多级动态缓存新方案
2024-11-13
Glean:企业AI搜索,估值46亿美元,ARR一年翻4倍
2024-11-12
从安装到配置,带你跑通GraphRAG
2024-11-12
蚂蚁 KAG 框架核心功能研读
2024-07-18
2024-07-09
2024-05-05
2024-07-09
2024-05-19
2024-06-20
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21