微信扫码
添加专属顾问
我要投稿
01
简介
02
方法
数据预处理:对源数据进行预处理,例如去除无关字符、分词等。
生成模式:将样本文本提交给 LLM,生成初始的 JSON 模式。
评估模式:使用 LLM 评估生成的模式的质量,例如是否包含所有实体类型、属性描述是否准确等。
修改模式:根据评估结果修改模式,例如添加或删除实体类型、修改属性描述等。
重复迭代:重复执行生成模式、评估模式和修改模式的步骤,直到获得最佳结构。
生成代码:将源数据样本提交给 LLM,生成初始的解析代码。
评估代码:使用 LLM 评估生成的代码的质量,例如是否能够正确解析源数据、是否能够生成结构化数据等。
修改代码:根据评估结果修改代码,例如修复解析错误、改进代码结构等。
重复迭代:重复执行生成代码、评估代码和修改代码的步骤,直到获得最佳解析效果。
文本节点创建:对于每个实体的输入数据属性中的每一行,都创建一个相应的节点,并链接到父实体节点。这些输入数据节点将用于利用NLP方法进行文本搜索。
Hybrid 查询:结合了KG查询和文本搜索的能力,指示LLM生成一个能够利用两种方法的任何相关功能的GQL语句。
03
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-16
基于大模型的智能问答场景解决方案——RAG提升召回率的关键
2025-10-16
用合成数据评测 RAG 系统:一份可直接上手的 DeepEval 实操指南
2025-10-16
2025 年 RAG 最佳 Reranker 模型
2025-10-16
HiRAG问答流程深入分析
2025-10-13
LightRAG × Yuxi-Know——「知识检索 + 知识图谱」实践案例
2025-10-13
PG用户福音|一次性搞定RAG完整数据库套装
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-09-15
2025-08-05
2025-09-02
2025-08-18
2025-08-25
2025-08-25
2025-08-25
2025-09-03
2025-08-20
2025-08-28
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20