微信扫码
与创始人交个朋友
我要投稿
01
简介
02
方法
数据预处理:对源数据进行预处理,例如去除无关字符、分词等。
生成模式:将样本文本提交给 LLM,生成初始的 JSON 模式。
评估模式:使用 LLM 评估生成的模式的质量,例如是否包含所有实体类型、属性描述是否准确等。
修改模式:根据评估结果修改模式,例如添加或删除实体类型、修改属性描述等。
重复迭代:重复执行生成模式、评估模式和修改模式的步骤,直到获得最佳结构。
生成代码:将源数据样本提交给 LLM,生成初始的解析代码。
评估代码:使用 LLM 评估生成的代码的质量,例如是否能够正确解析源数据、是否能够生成结构化数据等。
修改代码:根据评估结果修改代码,例如修复解析错误、改进代码结构等。
重复迭代:重复执行生成代码、评估代码和修改代码的步骤,直到获得最佳解析效果。
文本节点创建:对于每个实体的输入数据属性中的每一行,都创建一个相应的节点,并链接到父实体节点。这些输入数据节点将用于利用NLP方法进行文本搜索。
Hybrid 查询:结合了KG查询和文本搜索的能力,指示LLM生成一个能够利用两种方法的任何相关功能的GQL语句。
03
总结
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-04
Neo4j×Milvus:手把手教你搭建GraphRAG Agent
2024-12-04
别再用PostgreSQL了,Milvus才是多语言RAG的最佳搭档
2024-12-03
RAG系统中的困境:上下文不是想加就能加的
2024-12-03
Gitee AI+Dify 双剑合璧,打造另类 RAG 知识库
2024-12-03
详细的Agentic RAG的前世今生
2024-12-02
微软最新研究:RAG(Retrieval-Augmented Generation)的四个级别深度解析
2024-12-02
总算有人把智能体记忆说清楚了
2024-12-02
RAGOps 指南:构建和扩展检索增强生成系统
2024-07-18
2024-05-05
2024-05-19
2024-07-09
2024-06-20
2024-07-09
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-12-01
2024-11-27
2024-11-25
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27