微信扫码
添加专属顾问
我要投稿
摘要
本篇文章探讨了人工智能(AI)从简单的大型语言模型(LLM)发展到自主智能体的演变,概述了四个关键构建块(推理、外部记忆、执行和规划),并详细介绍了不同的智能体架构(检索增强生成(RAG)、工具使用、决策智能体、有限自主智能体和通用AI智能体),同时提供了实际案例。
关键要点:
- **生成式AI**正在从搜索、合成和生成的阶段向能够思考和行动的自主智能体演变。
- **完全自主智能体**的四个构建块为推理、外部记忆、执行和规划。
- 存在多种智能体架构,从检索增强生成(RAG)到完全自主的通用AI智能体,各有不同的自主程度。,
- 本文提供了各种应用中AI智能体的实例,展示了不同的自主水平和能力。,
- 文章强调了**智能体架构**的日益复杂性及所需的支持基础设施。
- **“轨道智能体”**架构被展示为自主性与控制之间的一种实用平衡。
- 最终目标是开发具备动态推理和规划能力的**通用AI智能体**。
来
AI Agents: A New Architecture for Enterprise Automation - Menlo Ventures
https://menlovc.com/perspective/ai-agents-a-new-architecture-for-enterprise-automation/
正文
代理设计的最后一个、仍然无法实现的圣杯是通用 AI 代理——一种 for 循环架构,其中 LLM 的高级功能包含了以前设计的结构化“轨道”。这个假设的代理将具有动态推理、规划和自定义代码生成能力,使其能够在外部系统中执行任何操作,而不仅仅是预定义的系统。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-20
大模型能像专业分析师一样提取用户需求吗?
2025-04-19
基于Embedding分块 - 文本分块(Text Splitting),RAG不可缺失的重要环节
2025-04-19
RAG升级-基于知识图谱+deepseek打造强大的个人知识库问答机器人
2025-04-19
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
2025-04-19
低代码 RAG 只是信息搬运工,Graph RAG 让 AI 具备垂直深度推理能力!
2025-04-18
微软PIKE-RAG全面解析:解锁工业级应用领域知识理解与推理
2025-04-18
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
2025-04-18
Firecrawl:颠覆传统爬虫的AI黑科技,如何为LLM时代赋能
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-20
2025-04-19
2025-04-18
2025-04-16
2025-04-14
2025-04-13
2025-04-11
2025-04-09