微信扫码
添加专属顾问
我要投稿
自动化机器学习(AutoML)旨在减少人为干预,自动设计可靠的机器学习解决方案。传统的AutoML框架依赖于预定义的搜索空间和固定流程,缺乏适应性,难以应对多样化和动态的数据场景,导致在复杂设置下性能不佳。尽管基于大型语言模型(LLM)的Agent显示出自动化机器学习任务的潜力,但它们在生成多样化和高度优化的代码方面存在不足,通常生成低多样性和次优代码,即使经过多次迭代优化。
本文提出了SELA(Tree-Search Enhanced LLM Agents),一种创新的基于Agent的系统,结合了蒙特卡罗树搜索(MCTS)和LLM Agent以优化AutoML过程。SELA将管道配置表示为树结构,使Agent能够智能地进行实验,并迭代优化其策略,从而更有效地探索机器学习解决空间。通过这种反馈驱动的过程,SELA能够基于实验反馈发现最佳路径,提高解决方案的整体质量。
下图是SELA的工作流程与其他Agent式AutoML框架的对比。
下图是SELA的整体管道运作流程
搜索空间表示:
计划生成过程:
MCTS中的UCT-DP选择函数:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-01
Cursor是越来越难用了!逼着我写mdc文档比代码还多
2025-04-01
Docker部署Dify+RAGFlow避坑指南
2025-04-01
大型语言模型如何高效微调量化?答案就是 QLoRA!
2025-04-01
LLaMA Factory微调后的大模型在vLLM框架中对齐对话模版
2025-04-01
AI大模型分布式训练技术原理是什么?看这篇超犀利解析!
2025-04-01
大模型部署该选谁?Ollama、vLLM 和 LMDeploy,各有千秋!
2025-04-01
【强烈建议收藏】一文读懂大模型训练的通信原语
2025-04-01
为什么你的Cursor效率不如我
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13
2025-03-13
2025-03-11