AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


Questflow借助MongoDB Atlas以AI重新定义未来工作方式
发布日期:2024-06-21 03:34:41 浏览次数: 1922 来源:MongoDB数据平台



MongoDB客户案例导读

Questflow借助MongoDB Atlas赋能AI员工,助力中小型初创企业自动化工作流程,简化数据分析,提升客户体验,推动AI与员工的协作,重新定义未来工作方式。















协作式AI自动化平台

无需编码即可拥有自己的AI员工

在Questflow首席执行官许博约(Bob Xu)看来,人类的工作方式正在发生着天翻地覆的变化。过去以人为主,未来将是人与AI共生,甚至出现1+N的情况,即1个人类员工与多个AI员工。大量的工作将会安排给AI员工自动化完成,人类员工则负责必要的衔接、审批、复核等工作。

Questflow是一家由奇绩创坛投资的专注于多AI智能体调度的初创公司,搭建了一个去中心化的自动化AI智能体网络,通过分发真实世界的需求和激励给到多个AI智能体来完成任务。与注重传统机器人自动化(RPA)的竞争对手相比,Questflow提供了全新的多AI智能体调度体系,允许人为介入工作流进行任务或交易的审批,打通新一代的工作流协作方式



Questflow:去中心化AI智能体网络

Questflow目前主要面向资源有限、团队规模较小的中小型初创企业,让他们能够轻松拥有自己的AI员工,快速实现某些工作流程的自动化,如市场信息的收集与分析、新媒体内容的发布、邮件回复、会议记录与摘要等等,而无需自己开发一套自动化体系,在Questflow平台上就即可完成一系列智能工作和服务。




业务挑战

AI员工需要更个性化、动态化

数据支撑需要更灵活、更有效


AI时代,拥有AI员工已成为一个趋势。AI员工可以执行重复性、繁琐或需要大量数据处理的工作,如数据分析、客户服务、文档处理等,可以集成到网站、移动应用程序或消息应用程序等各种平台中,为用户提供实时帮助和支持。

而AI员工作为Questflow的主推产品,Questflow更多思考的是如何使AI员工不只是像真人一样灵活,而且要比真人还更加高效。这就要求实现以下三个方面:

● 每一个AI员工都应是动态延展的,而不是静态的。例如一个员工初到一个公司,可能拥有基本教育背景和对行业、公司的基本了解,但随着工作开展,他不断将自身知识储备与工作实践相结合,不断记忆与学习。AI员工更应如此。

● 每一个AI员工都应是个性化的,而不是整齐划一的。每一个团队都会自己去创建一些专属的AI员工,从零去搭建,就需要赋予每个AI员工以不同的记忆能力、不同的分析能力、协调能力等等。

● 每一个AI员工的工作路径都应是顺畅的,而不是卡顿的。Questflow最核心的业务是可以通过自然语言描述帮助AI员工自动化完成任务,但是在执行的过程中,需要有推理、理解、执行等多个环节。基于AI模型的限制或是数据分析的限制,目前各个环节之间衔接还不够顺畅。


AI员工越智能,就需要越强大的数据库软件作为背后的支撑。当今社会正在同时经历“非结构化数据”与“人工智能”两场变革,AI员工要想变得动态化、个性化以及其工作路径变得顺畅,都需要后台处理大量非结构化数据。各类人工智能技术为人们提供了理解非结构化数据的途径,也就是将文本、图像、音频等非结构化数据嵌入为向量表示,并存储在向量数据库中,以便进行快速的相似度搜索和数据分析。

面对更高的工作标准,Questflow采用MongoDB Atlas,并将其应用于其数据管理服务。


解决方案

简化数据分析和程序开发

开创客户体验服务新局面

MongoDB Atlas是一个开创性的开发者数据平台,集成了操作、分析和生成AI数据服务,简化了智能应用程序的开发。

Questflow联合创始人兼首席技术官储奎(Carney Chu)表示:“要重新定义未来的工作方式,首先要重新定义我们自己的工作方式,即以出色的数据存储和处理能力提升我们AI员工的工作能力。MongoDB的适配性很强,尤其MongoDB Atlas作为针对AI量身打造的数据库解决方案,与我们的业务方向高度契合。

向量数据存储

Questflow的产品形态都是通过类似ChatGpt的对话方式,针对用户提出的问题,帮助自动化解决,后台需要做大量向量数据存储和处理的工作。将向量数据存储在MongoDB Atlas中,客户将在平台中利用Atlas向量搜索,进而提供高精度的GenAI内容。MongoDB可以从知识库嵌入的角度支持客户传统数据和支持向量数据。在这种情况下,客户可以在不需要开发人员任何努力的情况下就地进行混合搜索。

弹性扩容

虽然Questflow在初创阶段并未将数据库的升降级考虑进去,但当公司运营至2年左右,随着数据量的增加,MongoDB自动将其数据库进行了升级。MongoDB所具有的这种弹性扩容能力很适合Questflow这类初创公司,能够使开发人员专注于业务数据收集和分类服务,而无需为日常运维分配时间与精力。


云端部署

Questflow选择在亚马逊云科技云上用MongDB Atlas,以此实现开箱即用,点点按钮,通过后台配置一下即可。如果是本地部署,将要配备运维人员和一整套机器环境,所以,在成本控制、便捷程度、安全管理等方面,云端部署都具有明显的优势。


客户价值

为真正的人工智能合作打开大门

为突破性创新提供更多时间和资金

AI员工某种程度上就是用更少的资源实现更多的新工作方式。基于MongoDB Atlas的数据解决方案,Questflow已帮助多家中小初创企业的创新提供了更多“时间和资金”。

  • 如AI思维导图公司iMindMap,通过Questflow实现了博客发布的自动化;

  • 开源VC数据库公司OpenVC,通过Questflow实现了抓取、筛选和更新数据的自动化。

在谈及未来创想时,许博约(Bob Xu)谈到:希望可以尽快超越与AI对话的模式。例如,目前要创建一张海报,用户可以通过与AI聊天,让AI将海报创建完成,但后续的修改还需在其他平台上完成,用户体验被前后割裂。Questflow下一步要实现的就是可以多人对于AI产生的内容去进行协作修改、优化。

Questflow相信,人类工作者和人工智能工作者之间将会有更多的合作,并将为真正的人工智能合作打开大门,最重要的是,这种合作将为更多突破性创新提供时间和资金。

基于这一创想,Questflow也正在涉足为大中企业提供自动化服务,从日常邮件回复、社交媒体运营、市场营销等服务领域,朝着为客户提供更深入、更全面的系统性服务迈进。

如正在接触的某家国际知名奢侈品牌,在现有的社交媒体运营中,往往是通过几百个不同社交账号进行新品的图文发布和客户维护,每一个社交账号背后都是一个真人在实际操作。在未来,Questflow完全可以为这类需求提供一整套的人工智能服务,即多名AI员工团队协作的自动化。

在AI服务与用户体验共同提升的同时,是数据库中数据量、数据复杂程度的几何式增长。在数据变得更为庞杂的过程中,Questflow期待与MongoDB之间建立起的是一种共同应对挑战、共同解决问题的关系。


 

客户证言


Questflow联合创始人兼首席执行官

许博约(Bob Xu)

“未来世界必定是一个人类与AI共生的世界。我们在努力让AI员工变得近在眼前而且能够不断学习和成长,早日实现人类员工在Questflow平台上的多人协作,共同对AI员工生成的内容或完成的工作进行修改或优化。这是我们的愿景,即重新定义一种未来的工作方式。”


Questflow联合创始人兼首席技术官

储奎(Carney Chu)

“早期创业公司一般都会面临人力、资金、人员梯度等方面的压力。通过MongoDB Atlas,我们能够在一个统一的平台中存储和管理文档和向量数据,而且无需考虑服务器和运维等因素。简化的逻辑处理管道降低了成本、提高了效率。作为一家初创公司,这是一个巨大的优势。”


 MongoDB Atlas 

MongoDB Atlas 是 MongoDB 公司提供的 MongoDB 云服务,由 MongoDB 数据库的开发团队构建和运维,可以在亚马逊云科技、Microsoft Azure、Google Cloud Platform 云平台上轻松部署、运营和扩展。MongoDB Atlas 内建了 MongoDB 安全和运维最佳实践,可自动完成基础设施的部署、数据库的构建、高可用部署、数据的全球分发、备份等即费时又需要大量经验运维工作。让您通过简单的界面和 API 就可以完成这些工作,由此您可以将更多宝贵的时间花在构建您的应用上。扫描文末二维码,您可立即免费试用MongoDB Atlas。














53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询