微信扫码
添加专属顾问
我要投稿
没有采用现成的 RAG 中间件(比如LangChain和LlamaIndex)
能够自动识别文档的布局,包括标题、段落、图表等。比如我输入“Figure 1”进行测试,能召回对应的图,但还是只能保留了图的文本信息,但是对话时无法进行多模态理解
对表格进行单独处理和存储,且较好的还原了HTML表格,准确率还可以。在代码中,每个chunk使用的react-pdf-highlighter组件进行高亮显示,体验不错
为了适应不同行业和岗位对文档的不同需求,例如会计、HR、科研工作者等会接触到不同类型的文档,RAGFlow 提供了以下丰富的分块解析方法以及实例:
能够让用户随时查看是基于哪些原文生成答案的,提供了原文的引用链接,并允许用户进行详细的查看和对照。
追求对非结构化数据的深度语义理解,并计划将更加可扩展的文档结构识别模型应用到系统中,以适应企业级复杂场景的需求。
在数据源接入与集成方面,RAGFlow 设计目标是能够处理更多复杂场景,尤其是B端场景,并计划接入企业的各类数据源,如 MySQL 的 binlog、数据湖的 ETL、外部爬虫等,以实现更广泛的应用。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-31
企业 RAG 准确性提升全流程指南:从数据提取到精准检索
2025-03-31
RAG架构大揭秘:三种方式让AI回答更精准,更懂你!
2025-03-30
SuperRAG:超越RAG的布局感知图建模
2025-03-30
专利申请从2周到3天,Claude 3.7 Sonnet让我成为专利能手
2025-03-30
RAG没Rerank,等于开车没带方向盘
2025-03-30
一个轻量级 AI 自动标注 Excel 插件
2025-03-30
揭秘Embedding模型选型:如何用向量技术突破知识库的智能天花板?
2025-03-29
RAGFlow自动化脚本套件:自定义解析+回答质量评估+参数自动调优
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-03-30
2025-03-28
2025-03-27
2025-03-27
2025-03-25
2025-03-19
2025-03-18
2025-03-18