微信扫码
与创始人交个朋友
我要投稿
在处理非结构化文档时,特别是那些包含复杂表格的文档,一直是信息抽取和知识图谱构建的一大难题。随着人工智能技术的飞速发展,尤其是大型语言模型(LLM)的广泛应用,为我们提供了一种全新的视角和方法来应对这一挑战。下面我们简单了解RAG(Retrieval-Augmented Generation)流程,探讨如何在遇到PDF表格时,构建有效的索引,并利用大模型进行高质量的问答(QA)。
为了解决上述挑战,我们需要借助一些关键技术。最紧要的就是表格解析技术。表格解析的主要目标是准确、完整地提取出PDF文档中的表格结构,并将其转换为易于处理的格式。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-23
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”
2024-12-23
使用 Lang Chain 和 Lang Graph 构建多代理 RAG :分步指南 + Gemma 2
2024-12-23
RAG评估框架:RAG Triad框架及其实战
2024-12-22
2个简单技巧把 RAG 检索准确率从 50% 提高到 95 %
2024-12-22
Browser-Use + LightRAG Agent:可使用 LLM 抓取 99% 的网站
2024-12-22
Dynamic RAG实战:解决知识增强中的动态更新挑战
2024-12-21
构建行业RAG应用系统:金融、财务、保险、医疗等行业该怎么做?
2024-12-21
构建基于多智能体RAG的企业的AI应用程序
2024-07-18
2024-05-05
2024-06-20
2024-09-04
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-07-07
2024-06-13
2024-12-21
2024-12-14
2024-12-01
2024-11-27
2024-11-25
2024-11-06
2024-11-06
2024-11-05