微信扫码
添加专属顾问
我要投稿
今年四月微软发布了GraphRAG项目技术报告,PaperAgent专门发过推文进行详细介绍,时隔2个多月,微软正式开源了GrapRAG项目!
微软多部门联合推出GraphRAG项目:全面性和多样性方面显著优于原生大模型RAG
Document
- 系统中的输入文档,代表CSV中的单独行或者单独的.txt 文件。
TextUnit
- 要分析的文本块。这些块的大小、重叠度都可以配置。
Entity
- 从 TextUnit 中提取的实体,代表人物、地点、事件或您提供的其他实体模型。
Relationship
- 两个实体之间的关系。
Covariate
- 提取的声明信息,其中包含有关可能受时间限制的实体的陈述。
Community Report
- 一旦生成实体,就对它们执行分层社区检测,并为该层次结构中的每个社区生成报告。
Node
- 包含已嵌入和聚集的实体和文档的呈现图形视图的布局信息。
编写TextUnit( Compose TextUnits)
图谱提取(Graph Extraction)
图谱增强(Graph Augmentation)
社区总结( Community Summarization)
文档处理(Document Processing)
网络可视化(Network Visualization)
https://microsoft.github.io/graphrag/https://github.com/microsoft/graphrag
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-26
深度学习!构建基于LangGraph的RAG多智能体研究工具。
2025-04-26
用RAG与Agent提升企业问答效率:我的AI实践之路
2025-04-26
理解 RAG 第一部分:为什么需要它
2025-04-26
理解 RAG 第三部分:融合检索与重新排序
2025-04-26
理解 RAG 第四部分:检索增强生成评估框架
2025-04-26
理解 RAG 第五部分:管理上下文长度
2025-04-26
RAG比之MCP或长上下文LLM,要没落了吗?
2025-04-26
【Ragflow】21.RagflowPlus(v0.2.1):6个bug修复/增加重置密码功能
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20
2025-04-19
2025-04-18
2025-04-16