微信扫码
与创始人交个朋友
我要投稿
LLMs在处理长文本时,因为注意力机制二次时间和空间复杂度的问题,所以处理长文本时的内存消耗和计算成本有点恐怖。检索增强生成RAG自然就成了一个工业界成熟的解决方案,MemLong是一个新的解决方案,跟之前有些产品提到的RAG2.0有点类似(RAG 2.0有无数个版本~)。
整体上来看,他跟RAG的对比图如下,主要是通过存储过去的上下文和知识在一个记忆库中,利用这些存储的信息来检索(K-V and embedding pairs),来达到扩展了模型的上下文窗口的目的。
与标准语言建模目标相比,还会利用外部检索获取相关信息,并在模型的上层进行知识融合。
整体架构图如下
上层的注意力机制修改,将传统的多头注意力扩展到联合注意力机制,使每个token能够同时关注局部上下文和块级过去上下文
在多个长文本语言建模基准上进行了评估,显示出比其他最先进的LLMs更好的性能。它在单个GPU上能够将上下文长度从4k扩展到80k,大幅提高了模型在长文本任务中的性能。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-15
打造自己的RAG解析大模型:表格数据标注的三条黄金规则
2024-11-13
RAGCache:让RAG系统更高效的多级动态缓存新方案
2024-11-13
Glean:企业AI搜索,估值46亿美元,ARR一年翻4倍
2024-11-12
从安装到配置,带你跑通GraphRAG
2024-11-12
蚂蚁 KAG 框架核心功能研读
2024-11-12
【RAG】浅看引入智能信息助理提升大模型处理复杂推理任务的潜力-AssisTRAG
2024-11-12
体验完百度世界2024上的iRAG,我觉得AI绘图也可以没有幻觉了。
2024-11-12
提升RAG文档效率,10种有效策略
2024-07-18
2024-07-09
2024-05-05
2024-07-09
2024-05-19
2024-06-20
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21