微信扫码
添加专属顾问
我要投稿
在人工智能领域,垂直领域的挑战不断催生新的技术解决方案。RAG是一种结合检索和生成的深度学习模型,它通过检索大量相关文档,然后基于这些文档生成回答,从而提高回答的准确性和相关性。
然而,直接使用大型预训练模型来应对这些挑战并非没有问题。
为了解决这些问题,许多企业开始转向利用自身的知识库。企业内部的文档、业务数据和经营数据是宝贵的资源,它们提供了更准确、更安全的知识来源。通过将这些内部数据与RAG模型相结合,企业可以生成更符合自身需求和标准的高质量回答。
Retrieval-Augmented Generation(RAG)是一种先进的人工智能技术,它通过将检索结果与大型语言模型(LLM)结合,引导模型生成更加精准和可靠的答案。RAG的核心在于其能够实时更新知识库,而无需对模型进行重新训练,这大大提升了知识获取的时效性和灵活性。
RAG的三大优势
在某些关键场景中,如医疗咨询或法律服务,对答案的准确度要求极高,几乎需要达到“100%准确”。为此,RAG技术需要做到:
在快节奏的查询环境中,用户期望在1到3秒内获得答案。这要求RAG技术具备:
RAG技术的一个主要成本是GPU资源的消耗,特别是在训练和推理阶段。为了降低成本,需要:
在处理用户数据时,RAG技术必须严格遵守隐私和安全性的要求:
文本切片是将文档分割成更小的、易于处理和检索的部分。以下是几种不同的切片方法:
在RAG中,VectorStore扮演着关键角色,它用于存储和检索向量化的数据。HNSW是一种用于高效近似最近邻搜索的图算法。它构建了一个分层的图结构,每一层都具有不同的搜索精度和效率。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-13
LightRAG × Yuxi-Know——「知识检索 + 知识图谱」实践案例
2025-10-13
PG用户福音|一次性搞定RAG完整数据库套装
2025-10-12
任何格式RAG数据实现秒级转换!彻底解决RAG系统中最令人头疼的数据准备环节
2025-10-12
总结了 13 个 顶级 RAG 技术
2025-10-11
企业级 RAG 系统实战(2万+文档):10 个项目踩过的坑(附代码工程示例)
2025-10-09
RAG-Anything × Milvus:读PDF要集成20个工具的RAG时代结束了!
2025-10-09
RAGFlow 实践:公司研报深度研究智能体
2025-10-04
Embedding与Rerank:90%的RAG系统都搞错了!为什么单靠向量检索会毁了你的AI应用?
2025-09-15
2025-08-05
2025-08-18
2025-09-02
2025-08-25
2025-08-25
2025-07-21
2025-08-25
2025-09-03
2025-08-20
2025-10-04
2025-09-30
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20