微信扫码
与创始人交个朋友
我要投稿
在RAG的时候,再好的recall + rerank + 筛选策略,都会出现知识冲突,或query无关的候选知识的情况。文中称这种现象为“不完美检索”。
通常,当检索精度不低于 20%时,RAG 是有帮助的。当检索精度接近 0 时,带有 RAG 的模型的表现要比没有 RAG 的模型差。添加更多的检索段落并不一定导致更好的性能,因为额外的段落可能会降低检索精度。
核心流程如下图,分为3大步:
其中步骤2可以迭代多次。总体上可以获得不错的提升。
一个示例如下:图片wx翻译
3个步骤都是prompt来完成,wx图片翻译的prompt如下,仅供参考
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-01-04
检索增强生成 和思维链 结合: 如何创建检索增强思维链 (RAT)?
2025-01-04
我如何利用 ChromaDB 和 Chainlit 构建基于 Graph-RAG 系统的 LLM 应用程序
2025-01-04
吴恩达DeepLearning.AI课程系列 —— 大模型检索增强生成(一)
2025-01-04
吴恩达DeepLearning.AI课程系列 —— 大模型检索增强生成(二):文档划分技术简介
2025-01-04
吴恩达DeepLearning.AI课程系列 —— 大模型检索增强生成(三):向量数据库及嵌入
2025-01-04
吴恩达DeepLearning.AI课程系列 - 大模型检索增强生成(四):检索优化进阶
2025-01-04
吴恩达DeepLearning.AI课程系列 - 大模型检索增强生成(五):问题回复
2025-01-04
吴恩达DeepLearning.AI课程系列 - 大模型检索增强生成(六):问题回复
2024-07-18
2024-09-04
2024-05-05
2024-06-20
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-06-13
2024-07-07
2025-01-04
2024-12-30
2024-12-27
2024-12-26
2024-12-24
2024-12-21
2024-12-14
2024-12-01