微信扫码
与创始人交个朋友
我要投稿
使用GraphRAG提升信息检索相关性。
GraphRAG是传统RAG的升级版,通过索引和查询两大阶段,实现了信息的图结构化处理和社区检测技术,从而提升信息检索的上下文相关性。本文为大家详细介绍GraphRAG的设置和应用方法。
GraphRAG 是传统 RAG 的升级版,主要分为索引和查询两个阶段:
索引阶段:
查询阶段:
GraphRAG 的创新在于利用图结构化信息和社区检测技术,提升回答的上下文相关性,但其计算成本要高于传统 RAG,后者在成本效益上仍有优势。
conda create -n GraphRAG
conda activate GraphRAG
pip install graphrag
ragtest/input
文件夹。input
文件夹。python -m graphrag.index --init --root ./target
在 settings.yml
中设置 OpenAI API 密钥和模型配置。
python -m graphrag.index --init --root ./target
python -m graphrag.query --root ./target --method global "这个故事的主题是什么"
python -m graphrag.query --root ./target --method local "这个故事的主题是什么"
通过以上步骤,可设置并使用 GraphRAG 进行有效的信息检索。
测试结果显示,GraphRAG处理每本书的费用约为7美元,主要包括:
这些数据可作为评估GraphRAG性价比的参考。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-24
除了混合搜索,RAG 还需要哪些基础设施能力?
2024-12-24
万字长文梳理 2024 年的 RAG
2024-12-24
面向医疗场景的大模型 RAG 检索增强解决方案
2024-12-23
一文详谈20多种RAG优化方法
2024-12-23
深入RAG工作流:检索生成的最佳实践
2024-12-23
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”
2024-12-23
使用 Lang Chain 和 Lang Graph 构建多代理 RAG :分步指南 + Gemma 2
2024-12-23
RAG评估框架:RAG Triad框架及其实战
2024-07-18
2024-05-05
2024-06-20
2024-09-04
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-06-13
2024-07-07