微信扫码
与创始人交个朋友
我要投稿
offer捷报
RAG(Retrieval Augmented Generation)作为大模型最火热的应用之一,最初是为了解决 LLM 的各类问题的(如超长上下文)产生的,但后面大家发现在现阶段的很多企业痛点上,使用 RAG 是一个更好的解决方案。
于是,RAG 被越来越多提到,相关的论文,vectorDB,开源框架,一时间百花齐放。
但是我相信很多去实践 RAG 的人已经发现了一个情况,就是 RAG 入门很简单,基本不到半天就可以从头搭建一个基本的 RAG 系统。然而,要真正达到企业产品级应用的要求很难。
很多初学者对 RAG 中的各类组件、流程也不太了解,也不知道从哪儿下手去优化 RAG。所以这篇文章,我们就来聊聊 RAG,以及关于 RAG 的一些优化。
首先我们来看一下 RAG,简单来说,RAG 可以理解为 Retrieval 和 Generation,也就是检索与生成,在加上向量化和索引的工作,对 RAG 就可以总概方式地理解为“索引、检索和生成”
检索模块的调优
生成模型的调优
检索模块怎么优化?
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-02-05
浏览量超 10w 的热图,描述 RAG 的主流架构
2025-02-05
RAG+LlamaParse:引领PDF解析与检索新时代!
2025-02-05
打造RAG智能助手:实时数据检索的终极指南!惊呆你的需求,如何一步到位?
2025-02-05
RAG知识库中文档包含表格数据如何处理?
2025-02-05
产品思维的角度来讲,Deep Research本质是Co-RAG
2025-02-04
你的RAG系统真的达标了吗?生产环境RAG成功的7大关键指标
2025-02-01
35页综述:Agentic RAG七大架构首次曝光!
2025-01-28
Model2Vec加速RAG:模型小15倍,速度快500倍:
2024-07-18
2024-09-04
2024-05-05
2024-06-20
2024-10-27
2024-07-09
2024-07-09
2024-06-13
2024-05-19
2024-07-07
2025-02-05
2025-02-05
2025-01-24
2025-01-24
2025-01-20
2025-01-18
2025-01-18
2025-01-18