微信扫码
与创始人交个朋友
我要投稿
PORT=3001GROQ_API_KEY=<GROQ API KEY>GROQ_MODEL=gemma2-9b-itGEMINI_API_KEY=<GEMINI API KEY>GEMINI_TEXT_EMBEDDING_MODEL=text-embedding-004SWAGGER_TITLE='Langchain Search Agent'SWAGGER_DESCRIPTION='Use Langchain tools and agent to search information on the Internet.'SWAGGER_VERSION='1.0'SWAGGER_TAG='Gemma 2, Langchain.js, Agent Tools'DUCK_DUCK_GO_MAX_RESULTS=1
安装依赖项
npm i -save-exact @google/generative-ai @langchain/community@langchain/core @langchain/google-genai @langchain/groq @nestjs/axios @nestjs/config @nestjs/swagger @nestjs/throttler axios cheerio class-transformer class-validator compression duck-duck-scrape hbs langchain zod
定义应用的配置
export default () => ({ port: parseInt(process.env.PORT || '3001', 10), groq: { apiKey: process.env.GROQ_API_KEY || '', model: process.env.GROQ_MODEL || 'gemma2-9b-it', }, gemini: { apiKey: process.env.GEMINI_API_KEY || '', embeddingModel: process.env.GEMINI_TEXT_EMBEDDING_MODEL || 'text-embedding-004', }, swagger: { title: process.env.SWAGGER_TITLE || '', description: process.env.SWAGGER_DESCRIPTION || '', version: process.env.SWAGGER_VERSION || '', tag: process.env.SWAGGER_TAG || '', }, duckDuckGo: { maxResults: parseInt(process.env.DUCK_DUCK_GO_MAX_RESULTS || '1', 10), },});
// duck-config.type.ts
export type DuckDuckGoConfig = {
maxResults: number;
};
// groq-config.type.ts
export type GroqConfig = {
model: string;
apiKey: string;
};
创建 Angular Doc 模块
nest g mo angularDoc
添加嵌入模型
// application/types/embedding-model-config.type.ts
export type EmbeddingModelConfig = {
apiKey: string;
embeddingModel: string;
};
// application/embeddings/create-embedding-model.ts
import { TaskType } from '@google/generative-ai';
import { GoogleGenerativeAIEmbeddings } from '@langchain/google-genai';
import { ConfigService } from '@nestjs/config';
import { EmbeddingModelConfig } from '../types/embedding-model-config.type';
export function createTextEmbeddingModel(configService: ConfigService, title = 'Angular') {
const { apiKey, embeddingModel: model } = configService.get<EmbeddingModelConfig>('gemini');
return new GoogleGenerativeAIEmbeddings({
apiKey,
model,
taskType: TaskType.RETRIEVAL_DOCUMENT,
title,
});
}
创建文档
// application/loaders/web-page-loader.ts
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { CheerioWebBaseLoader } from '@langchain/community/document_loaders/web/cheerio';
async function loadWebPages(webPages: string[]) {
const loaders = webPages.map((page) => new CheerioWebBaseLoader(page));
const docs = await Promise.all(loaders.map((loader) => loader.load()));
const signalDocs = docs.flat();
return splitter.splitDocuments(signalDocs);
}
export async function loadSignalWebPages() {
const webPages = [
'https://angular.dev/guide/signals',
'https://angular.dev/guide/signals/rxjs-interop',
'https://angular.dev/guide/signals/inputs',
'https://angular.dev/guide/signals/model',
'https://angular.dev/guide/signals/queries',
'https://angular.dev/guide/components/output-fn',
];
return loadWebPages(webPages);
}
export async function loadFormWebPages() {
const webPages = [
'https://angular.dev/guide/forms',
'https://angular.dev/guide/forms/reactive-forms',
'https://angular.dev/guide/forms/typed-forms',
'https://angular.dev/guide/forms/template-driven-forms',
'https://angular.dev/guide/forms/form-validation',
'https://angular.dev/guide/forms/dynamic-forms',
];
return loadWebPages(webPages);
}
创建检索器
private async createSignalRetriever() {
const docs = await loadSignalWebPages();
this.logger.log(`number of signal docs -> ${docs.length}`);
const embeddings = createTextEmbeddingModel(this.configService, 'Angular Signal');
const vectorStore = await MemoryVectorStore.fromDocuments(docs, embeddings);
return vectorStore.asRetriever();
}
private async createFormRetriever() {
const docs = await loadFormWebPages();
this.logger.log(`number of form docs -> ${docs.length}`);
const embeddings = createTextEmbeddingModel(this.configService, 'Angular Forms');
const vectorStore = await MemoryVectorStore.fromDocuments(docs, embeddings);
return vectorStore.asRetriever();
}
从检索器创建检索工具
private async createSignalRetrieverTool(): Promise<DynamicStructuredTool<any>> {
const retriever = await this.createSignalRetriever();
return createRetrieverTool(retriever, {
name: 'angular_signal_search',
description: `Search for information about Angular Signal.
For any questions about Angular Signal API, you must use this tool!
Please Return the answer in markdown
If you do not know the answer, please say you don't know.
`,
});
}
private async createFormRetrieverTool(): Promise<DynamicStructuredTool<any>> {
const retriever = await this.createFormRetriever();
return createRetrieverTool(retriever, {
name: 'angular_form_search',
description: `Search for information about Angular reactive, typed reactive, template-drive, and dynamic forms.
For any questions about Angular Forms, you must use this tool!
Please return the answer in markdown.
If you do not know the answer, please say you don't know.`,
});
}
async createRetrieverTools(): Promise<DynamicStructuredTool<any>[]> {
return Promise.all([this.createSignalRetrieverTool(), this.createFormRetrieverTool()]);
}
创建 Agent 模块
nest g mo agentnest g s agent/application/agentExecutor --flatnest g s agent/application/dragonBall --flatnest g s agent/presenters/http/agent --flat
创建常量
// agent.constant.ts
export const AGENT_EXECUTOR = 'AGENT_EXECUTOR';
// groq-chat-model.constant.ts
export const GROQ_CHAT_MODEL = 'GROQ_CHAT_MODEL';
// tools.constant.ts
export const TOOLS = 'TOOLS';
Providers
// groq-chat-model.provider.ts
import { ChatGroq } from '@langchain/groq';
import { Inject, Provider } from '@nestjs/common';
import { ConfigService } from '@nestjs/config';
import { GroqConfig } from '~configs/types/groq-config.type';
import { GROQ_CHAT_MODEL } from '../constants/groq-chat-model.constant';
export function InjectChatModel() {
return Inject(GROQ_CHAT_MODEL);
}
export const GroqChatModelProvider: Provider<ChatGroq> = {
provide: GROQ_CHAT_MODEL,
useFactory: (configService: ConfigService) => {
const { apiKey, model } = configService.get<GroqConfig>('groq');
return new ChatGroq({
apiKey,
model,
temperature: 0.3,
maxTokens: 2048,
streaming: false,
});
},
inject: [ConfigService],
};
// tool.provider.ts
import { DuckDuckGoSearch } from '@langchain/community/tools/duckduckgo_search';
import { Tool } from '@langchain/core/tools';
import { Provider } from '@nestjs/common';
import { ConfigService } from '@nestjs/config';
import { AngularDocsService } from '~angular-docs/application/angular-docs.service';
import { DuckDuckGoConfig } from '~configs/types/duck-config.type';
import { TOOLS } from '../constants/tools.constant';
import { DragonBallService } from '../dragon-ball.service';
export const ToolsProvider: Provider<Tool[]> = {
provide: TOOLS,
useFactory: async (service: ConfigService, dragonBallService: DragonBallService, docsService: AngularDocsService) => {
const { maxResults } = service.get<DuckDuckGoConfig>('duckDuckGo');
const duckTool = new DuckDuckGoSearch({ maxResults });
const characterFiltertool = dragonBallService.createCharactersFilterTool();
const retrieverTools = await docsService.createRetrieverTools();
return [duckTool, characterFiltertool, ...retrieverTools];
},
inject: [ConfigService, DragonBallService, AngularDocsService],
};
import { ChatPromptTemplate } from '@langchain/core/prompts';
import { Tool } from '@langchain/core/tools';
import { ChatGroq } from '@langchain/groq';
import { Inject, Provider } from '@nestjs/common';
import { AgentExecutor, createToolCallingAgent } from 'langchain/agents';
import { AGENT_EXECUTOR } from '../constants/agent.constant';
import { GROQ_CHAT_MODEL } from '../constants/groq-chat-model.constant';
import { TOOLS } from '../constants/tools.constant';
const prompt = ChatPromptTemplate.fromMessages([
['system', 'You are a helpful assistant.'],
['placeholder', '{chat_history}'],
['human', '{input}'],
['placeholder', '{agent_scratchpad}'],
]);
export function InjectAgent() {
return Inject(AGENT_EXECUTOR);
}
export const AgentExecutorProvider: Provider<AgentExecutor> = {
provide: AGENT_EXECUTOR,
useFactory: async (llm: ChatGroq, tools: Tool[]) => {
const agent = await createToolCallingAgent({ llm, tools, prompt, streamRunnable: false });
console.log('tools', tools);
return AgentExecutor.fromAgentAndTools({
agent,
tools,
verbose: true,
});
},
inject: [GROQ_CHAT_MODEL, TOOLS],
};
在 DragonBall Service 中
创建自定义工具
import { DynamicStructuredTool, tool } from '@langchain/core/tools';
import { HttpService } from '@nestjs/axios';
import { Injectable } from '@nestjs/common';
import { z } from 'zod';
import { CharacterFilter } from './types/character-filter.type';
import { Character } from './types/character.type';
export const characterFilterSchema = z.object({
name: z.string().optional().describe('Name of a Dragon Ball Z character.'),
gender: z.enum(['Male', 'Female', 'Unknown']).optional().describe('Gender of a Dragon Ball Z caracter.'),
race: z.enum(['Human', 'Saiyan'])
.optional()
.describe('Race of a Dragon Ball Z character'),
affiliation: z.enum(['Z Fighter', 'Red Ribbon Army', 'Namekian Warrior'])
.optional()
.describe('Affiliation of a Dragon Ball Z character.'),
});
()
export class DragonBallService {
constructor(private readonly httpService: HttpService) {}
async getCharacters(characterFilter: CharacterFilter): Promise<string> {
const filter = this.buildFilter(characterFilter);
if (!filter) {
return this.generateMarkdownList([]);
}
const characters = await this.httpService.axiosRef
.get<Character[]>(`https://dragonball-api.com/api/characters?${filter}`)
.then(({ data }) => data);
return this.generateMarkdownList(characters);
}
createCharactersFilterTool(): DynamicStructuredTool<any> {
return tool(async (input: CharacterFilter): Promise<string> => this.getCharacters(input), {
name: 'dragonBallCharacters',
description: `Call Dragon Ball filter characters API to retrieve characters by name, race, affiliation, or gender.`,
schema: characterFilterSchema,
});
}
创建 Agent 执行器服务
import { AIMessage, HumanMessage } from '@langchain/core/messages';
import { Injectable } from '@nestjs/common';
import { AgentExecutor } from 'langchain/agents';
import { ToolExecutor } from './interfaces/tool.interface';
import { InjectAgent } from './providers/agent-executor.provider';
import { AgentContent } from './types/agent-content.type';
()
export class AgentExecutorService implements ToolExecutor {
private chatHistory = [];
constructor(private agentExecutor: AgentExecutor) {} ()
async execute(input: string): Promise<AgentContent[]> {
const { output } = await this.agentExecutor.invoke({ input, chat_history: this.chatHistory });
this.chatHistory = this.chatHistory.concat([new HumanMessage(input), new AIMessage(output)]);
if (this.chatHistory.length > 10) {
// remove the oldest Human and AI Messages
this.chatHistory.splice(0, 2);
}
return [
{
role: 'Human',
content: input,
},
{
role: 'Assistant',
content: output,
},
];
}
}
private chatHistory = [];if (this.chatHistory.length > 10) { // remove the oldest Human and AI Messages this.chatHistory.splice(0, 2);}
添加 Agent 控制器
import { IsNotEmpty, IsString } from 'class-validator';
export class AskDto {
()
()
query: string;
}
@Post() async ask(@Body() dto: AskDto): Promise<string> { const contents = await this.service.execute(dto.query); return toDivRows(contents); }
修改应用控制器以渲染 Handlebar 模板
@Controller()export class AppController { @Render('index') @Get() async getHello(): Promise<Record<string, string>> { return { title: 'Langchain Search Agent', }; }}
HTMX 和 Handlebar 模板引擎
default.hbs<!DOCTYPE html><html lang="en"> <head> <meta charset="utf-8" /> <meta name="description" content="Angular tech book RAG powed by gemma 2 LLM." /> <meta name="author" content="Connie Leung" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>{{{ title }}}</title> <style> *, *::before, *::after { padding: 0; margin: 0; box-sizing: border-box; }</style> <script src="https://cdn.tailwindcss.com?plugins=forms,typography"></script> </head> <body class="p-4 w-screen h-screen min-h-full"> <script src="https://unpkg.com/htmx.org@2.0.1" integrity="sha384-QWGpdj554B4ETpJJC9z+ZHJcA/i59TyjxEPXiiUgN2WmTyV5OEZWCD6gQhgkdpB/" crossorigin="anonymous"></script> <div class="h-full grid grid-rows-[70px_1fr_40px] grid-cols-[1fr]"> {{> header }} {{{ body }}} {{> footer }} </div> </body></html>
<div> <div class="mb-2 p-1 border border-solid border-[#464646] rounded-lg"> <p class="text-[1.25rem] mb-2 text-[#464646] underline">Architecture</p> <ul id="architecture" hx-trigger="load" hx-get="/agent/architecture" hx-target="#architecture" hx-swap="innerHTML"></ul> </div> <div id="results" class="mb-4 h-[300px] overflow-y-auto overflow-x-auto"></div> <form id="rag-form" hx-post="/agent" hx-target="#results" hx-swap="beforeend swap:1s"> <div> <label> <span class="text-[1rem] mr-1 w-1/5 mb-2 text-[#464646]">Question: </span> <input type="text" name="query" class="mb-4 w-4/5 rounded-md p-2" placeholder="Ask the agent" aria-placeholder="Placeholder to ask any question to the agent"></input> </label> </div> <button type="submit" class="bg-blue-500 hover:bg-blue-700 text-white p-2 text-[1rem] flex justify-center items-center rounded-lg"> <span class="mr-1">Send</span><img class="w-4 h-4 htmx-indicator" src="/images/spinner.gif"> </button> </form></div>
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-21
用LangChain教AI模仿你的写作风格:详细教程
2024-12-18
一站式 LLM 工程观测平台:Langfuse,让所有操作可观测
2024-12-17
LLMs开发者必看!Pydantic AI代理框架震撼登场!
2024-12-16
用LangChain实现一个Agent
2024-12-16
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
2024-12-16
大模型部署调用(vLLM+LangChain)
2024-12-14
利用 LangGraph 和代理优化工作流程效率:关键功能、用例和集成...
2024-12-09
深度丨LangChain团队基于Agents用户体验设计的研究
2024-04-08
2024-08-18
2024-06-03
2024-10-10
2024-04-08
2024-04-17
2024-06-24
2024-07-13
2024-04-11
2024-04-12
2024-12-02
2024-11-25
2024-10-30
2024-10-11
2024-08-18
2024-08-16
2024-08-04
2024-07-29