微信扫码
添加专属顾问
我要投稿
专为混合专家模型设计的通信库DeepEP,优化数据传输,提升分布式训练效率。 核心内容: 1. 支持全交换GPU核心,实现高吞吐低延迟通信 2. 动态资源调控,根据任务需求调整SM数量 3. 支持低精度运算,加速大规模分布式训练
DeepEP 是一个专为混合专家(Mixture-of-Experts, MoE)和专家并行(Expert Parallelism, EP)设计的通信库。它提供了高吞吐、低延迟的全交换(all-to-all)GPU核心(kernels),即MoE的调度(dispatch)与合并(combine)操作,并支持FP8等低精度运算。
为适配DeepSeek-V3论文中提出的组限门控(group-limited gating)算法,提供了一组针对非对称域带宽转发优化的核心,例如将数据从NVLink域转发至RDMA域。这些核心具有高吞吐特性,适用于训练和推理预填充(prefilling)任务,同时支持流多处理器(Streaming Multiprocessors, SM)数量调控。
针对延迟敏感的推理解码场景,DeepEP包含一组基于纯RDMA的低延迟核心,以最小化通信延迟。此外,该库还引入了基于钩子(hook)的通信-计算重叠方法,此方法无需占用任何SM资源。
DeepEP主要解决MoE模型在分布式训练和推理中的通信瓶颈问题,通过优化数据传输和资源调度,实现“降本增效”。
高效的全对全通信(All-to-All):支持节点内(NVLink)和节点间(RDMA)的高带宽通信,优化数据在不同专家子网络间的快速交换。
动态资源调控:基于群组限制门控算法(group-limited gating),动态分配GPU计算单元(SM)数量,任务多时增加资源,任务少时降低功耗,减少资源浪费。支持低精度运算:原生支持FP8格式,减少内存占用并加速计算,适用于大规模分布式训练
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-04
使用 Meta 系列模型构建
2025-04-04
OpenAI推出免费学习社区,让你悄悄变强
2025-04-04
OpenAI 免费 “AI 补习班”:教你偷偷变强!『OpenAI Academy』
2025-04-03
4天开发,1700万美元融资:开源的Browser Use为啥这么火?
2025-04-03
为什么大模型本地部署后“没了下文”?
2025-04-03
35k star,一款颠覆性的文本转语音神器,已开源!
2025-04-03
阿里搞了个大新闻!这AI能听会看还会实时唠嗑,科幻片都不敢这么拍?
2025-04-03
GitHub 重磅开源!GPT-Crawler:一键爬取网站知识库,打造专属AI大脑!
2025-01-01
2024-07-25
2025-01-21
2024-05-06
2024-09-20
2024-07-20
2024-06-12
2024-07-11
2024-08-13
2024-12-26
2025-04-03
2025-04-03
2025-04-03
2025-04-01
2025-03-31
2025-03-25
2025-03-25
2025-03-24